
Optimal growth, bequests and competitive

equilibrium cycles in two-sector OLG models∗

Elias CHAUMEIX

ENSAE

E-mail: elias.chaumeix@ensae-paristech.fr

Florian PELGRIN

EDHEC Business School

E-mail: florian.pelgrin@edhec.edu

and

Alain VENDITTI†

Aix-Marseille Univ., CNRS, EHESS, Centrale Marseille, AMSE

& EDHEC Business School

E-mail: alain.venditti@univ-amu.fr

This paper is dedicated to Pierre Cartigny (1946-2019)

Incomplete version. Do not quote without the authors’

permission

Abstract:

Keywords: Two-sector overlapping generations model, optimal growth, endogenous

fluctuations, periodic and quasi-periodic cycles, altruism, bequest

Journal of Economic Literature Classification Numbers: C62, E32, O41.

∗This work was supported by French National Research Agency Grants ANR-08-
BLAN-0245-01 and ANR-17-EURE-0020. We thank T. Seegmuller for useful comments
and suggestions.

†Corresponding author: AMSE, 5 Bd Maurice Bourdet, 13205 Marseille Cedex 01,
France



1 Introduction

It has been recently proved by Piketty [14] that in a country like France the
annual flow of inheritance was about 20–25% of national income between
1820 and 1910, down to less than 5% in 1950, and back up to about 15%
by 2010. The following graph indeed shows a long-run cyclic behavior of
inheritance flows.

Figure 1: Annual inheritance flow as a fraction of national income, France
1820-2008 (Source: Piketty [14])

Similar conclusions have been reached by Atkinson [1] for the UK as
shown in the following graph:

Figure 2: Comparison of France (red) and the United Kingdom (blue):
transmitted wealth as percentage of net national income from 1896 to 2008
(Source: Atkinson [1])
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The objective of this paper is to provide a simple model that can explain
such a long-run cyclic behavior. The standard model that allows to study
inheritance flows across generations has been initially provided by Barro [3]
with the concept of optimal bequest. As shown by Weil [18], as long as
bequests are strictly positive across generations, the solution of the Barro
model is equivalent to the solution of a Ramsey-type optimal growth model
where a central planner maximizes the total intertemporal welfare.

Building on the well-known stability properties of the aggregate Ramsey
model, it can be easily shown that if the life-cycle utility function of a
representative generation living over two periods is additively separable,
then the optimal path monotonically converges toward the steady state.
In such a case there is no room for any cyclic behavior of bequests. But
Michel and Venditti [13] have proved that if the life-cycle utility function
is non-additively separable with a positive cross derivative across periods
then endogenous period-two cycles can occur. This conclusion shows that
such a model based on a preference mechanism is formally equivalent to
a standard two-sector optimal growth model where period-two endogenous
cycles rely on a technology mechanism as they occur if the consumption
good is more capital intensive than the investment good (see Benhabib and
Nishimura [6]). The main critic of this result with respect to our goal to
describe accurately the long run dynamics of bequests is that period-two
cycles implies negative auto-correlations of variables which are not in line
with the empirical properties of macroeconomic time series.

The strategy in this paper is then to extend the Michel and Venditti
[13] formulation to a two-sector economy. Beside introducing in the analysis
both mechanisms relying on preference and technology, the extended model
leads now to a dimension-four dynamical system which can give rise to the
existence of quasi-periodic optimal paths, through the occurrence of complex
characteristic roots, that do not imply negative auto-correlation of variables
and are in line with the long run empirical properties of aggregate time series.
The analysis is divided in two parts. In a first part, under the assumption
of a non-strictly concave utility function, we show that the preference and
technology mechanisms can be separated and lead, each of them, to the
existence of period-two cycles. The global dynamics can then be described
as the product of two cycles implying complex properties of the optimal
path. In a second part, considering a strictly concave utility function, the
preference and technology mechanisms are now combined and can lead to
the existence of quasi-periodic cycles if the life-cycle utility function is non-
additively separable with a positive cross derivative across periods and the
consumption good is more capital intensive than the investment good. We
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also show that all these results are of course compatible with the conditions
of positive bequests.

The paper is organized as follows. In Section 2 we present the two-
sector model with non-additively separable preferences, define the optimal
growth problem of the central planner, prove the existence of a steady state
and derive the characteristic polynomial from which the stability analysis
if conducted. The existence of period-two cycles under the assumption of
a non-strictly concave utility function is discussed in Section 3 together
with the presentation of a simple example to illustrate the main conditions.
Section 4 contains the extension to the case of a strictly concave utility
function. We provide general sufficient conditions that rule out the existence
of complex characteristic roots and we consider a specific utility function
formulation to prove the possible existence of a Hopf bifurcation and thus of
quasi-periodic cycles. In Section 5 we show that all our previous conditions
are compatible with strictly positive bequests. Concluding comments are
provided in Section 6 and all the proofs are contained into a final Appendix.

2 The model

2.1 Production

We consider a two-sector economy with one pure consumption good y0 and
one capital good y. Each good is produced with a standard constant returns
to scale technology:

y0 = f0(k0, l0), y = f1(k1, l1)

with k0+k1 ≤ k, k being the total stock of capital, and l0+ l1 ≤ 1, the total
amount of labor being normalized to 1.

Assumption 1. Each production function f i : R2
+ → R+, i = 0, 1, is C2,

increasing in each argument, concave, homogeneous of degree one and such
that for any x > 0, f i

ki
(0, x) = f i

li
(x, 0) = +∞, f i

ki
(+∞, x) = f i

li
(x,+∞) =

0.

For any given (k, y, ℓ), we define a temporary equilibrium by solving the
following problem of optimal allocation of factors between the two sectors:

T (k, y) = max
k0,k1,l0,l1

f0(k0, l0)

s.t. y ≤ f1(k1, l1)

k0 + k1 ≤ k

l0 + l1 ≤ 1

k0, k1, l0, l1 ≥ 0

(1)
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The value function T (k, y) is called the social production function and de-
scribes the frontier of the production possibility set. Constant returns to
scale of technologies imply that T (k, y) is concave non strictly. We will
assume in the following that T (k, y) is at least C2.

Denoting p the price of the investment good, r the rental rate of capital
and w the wage rate, all in terms of the price of the consumption good, it
is easy to show that

Tk(k, y, ) = r(k, y), Ty(k, y) = −p(k, y) (2)

and
w(k, y) = T (k, y)− r(k, y)k + p(k, y)y (3)

We can also characterize the second derivatives of T (k, y). From the
concavity property we have:

Tkk(k, y) =
∂r
∂k ≤ 0, Tyy(k, y) = − ∂p

∂y ≤ 0

As shown by Benhabib and Nishimura [7], the sign of the cross derivative
Tky(k, y) is given by the sign of the relative capital intensity difference be-
tween the two sectors. Denoting

a00 = l0/y0, a10 = k0/y0, a01 = l1/y, a11 = k1/y

the capital and labor coefficients in each sector, it is easy to derive from the
constant returns to scale property that

dp
dr = a01

(

a11
a01

− a10
a00

)

≡ b (4)

with b the relative capital intensity difference, and thus

Tky = Tyk = −∂p
∂r

∂r
∂k = −Tkkb

The sign of b and of Tky is positive if and only if the investment good is
capital intensive. Notice also that Tyy(k, y) may be written as

Tyy = −∂p
∂r

∂r
∂y = Tkkb

2

Remark : The derivative dr/dp = b−1 is well-known in trade theory as
the Stolper-Samuelson effect. Similarly, at constant prices, we can derive
the associated Rybczinsky effect

dy
dk = b−1

We therefore find the well-known duality between the Rybczinsky and
Stolper-Samuelson effects.
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2.2 Preferences

The economy is populated by a constant population of finitely-lived agents.1

In each period t, Nt = N persons are born, and they live for two periods:
they work during the first (with one unit of labor supplied) and they have
preferences for consumption (ct, when they are young, and dt+1, when they
are old) which are summarized by the utility function u(ct, Bdt+1), with
B > 0 a normalization constant, such that

Assumption 2. u(c,Bd) is increasing with respect to each argument
(u1(c,Bd) > 0 and ud(c,Bd) > 0), concave and C2 over the interior of
R
2
+. Moreover, for all consumption levels c, d > 0, uc(0, Bd) = ud(c, 0) = ∞

and uc(+∞, Bd) = ud(c,+∞) = ∞.

We also introduce a standard normality assumption between the two
consumption levels

Assumption 3. Consumptions c and d are normal goods.

We finally introduce the following useful elasticities of substitution of
consumptions:

ǫcc = −uc/uccc > 0, ǫcd = −uc/ucdBd, (5)

ǫdc = −ud/ucdc, ǫdd = −ud/uddBd > 0 (6)

Notice that the normality Assumption 3 implies 1/ǫcc−1/ǫdc ≥ 0 and 1/ǫdd−
1/ǫcd ≥ 0 and concavity in Assumption 2 implies 1/(ǫccǫdd)−1/(ǫdcǫcd) ≥ 0.

2.3 The optimal growth problem

Under complete depreciation within one period,2 the capital accumulation
equation is

kt+1 = yt (7)

Total labor being normalized to 1, we consider from now on that N = 1.
At each time t total consumption is then given by the social production
function, i.e. ct + dt = T (kt, yt). The objective of the central planner
combines utilities of successive generations

max
{ct,dt+1}

+∞
∑

t=0

βtu(ct, Bdt+1) (8)

1An increasing population could be considered without altering all our results.
2Considering that in an OLG model one period is approximately 30 years, complete

depreciation is a realistic assumption.
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where β ∈ (0, 1] is the discount factor.3 Considering (7) and the fact that
ct = T (kt, yt)−dt, the optimization program (8) can be equivalently written
as follows

max
{dt+1,kt+1}

+∞
∑

t=0

βtu(T (kt, kt+1)− dt, Bdt+1) (9)

with d0 and k0 given. The first order conditions are given by the following
two difference equations of order two:

ud(T (kt, kt+1)− dt, Bdt+1)B − βuc(T (kt+1, kt+2)− dt+1, Bdt+2) = 0

uc(T (kt, kt+1)− dt, Bdt+1)Ty(kt, kt+1) +

βuc(T (kt+1, kt+2)− dt+1, Bdt+2)Tk(kt+1, kt+2) = 0

(10)

2.4 Steady state

A steady state is defined as kt = k∗, dt = d∗ for all t solutions of the following
equations

ud(T (k,k)−d,Bd)B
uc(T (k,k)−d,Bd) = β

−
Ty(k,k)
Tk(k,k)

= β
(11)

Beside discussing the existence and uniqueness of the steady state, we need
also to use the normalization parameter B in order to normalize the sta-
tionary consumption d, rendering it constant when the discount factor β is
modified. As in the standard two-sector model, we get the following result:

Proposition 1. Under Assumptions 1-3, there exists a unique steady state
(k∗, d∗) solution of equations (11). Moreover, there exists a unique value B∗

such when B = B∗, the stationary consumption d∗ can be normalized to any
value d̄ ∈ (0, T (k∗, k∗)).

Proof. See Appendix 7.1.

A pair (k∗, d∗) will be called the Modified Golden Rule. The stationary
consumption of young agents is obtained from c∗ = T (k∗, k∗)− d∗.

2.5 Characteristic polynomial

Based on the above computations, the characteristic polynomial is derived
from total differentiation of equations (10). Denoting Tk(k

∗, k∗) = T ∗
k and

Tkk(k
∗, k∗) = T ∗

kk, we get:

3In the case β = 1, the infinite sum into the optimization program (8) may not converge.
In such a case we may apply the definition of optimality as provided by Ramsey [15].
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Lemma 1. Under Assumptions 1-3, the degree-4 characteristic polynomial
is given by

P(λ) =
[

λ2 − λ
(

ǫdc
βǫcc

+ ǫcd
ǫdd

)

+ 1
β

]

(λb−1)(λβ−b)
βb

− λ(λ− 1)
(

λ− 1
β

)

βT ∗2
k

bǫccc∗T ∗
kk

(

ǫcc
ǫdc

− ǫcd
ǫdd

)
(12)

Proof. See Appendix 7.2.

Remark : Notice that if b = 0, we get the one-sector formulation with
a two-dimensional dynamical system as considered in Michel and Venditti
[13]. The characteristic polynomial can indeed be simplified as follows

P(λ) = λ2 − λ

ǫdc
βǫcc

+
ǫcd
ǫdd

+
(1+β)T∗2

k
ǫccc∗T

∗
kk

(

ǫcc
ǫdc

− ǫcd
ǫdd

)

1+
βT∗2

k
ǫccc∗T

∗
kk

(

ǫcc
ǫdc

− ǫcd
ǫdd

)
+ 1

β

The same conclusions as in Michel and Venditti [13] are obviously derived.
Similarly, if the utility function is additively separable, i.e. ucd = udc = 0,

we get the two-sector optimal growth formulation with a two-dimensional
dynamical system as considered in Benhabib and Nishimura [6]. The char-
acteristic polynomial can indeed be simplified as follows

P(λ) = λ2 − λ(1 + β)

βT∗2
k

ǫccc∗T
∗
kk

−(β+b2)

βT∗2
k

ǫccc∗T
∗
kk

−(1+β)b
+ 1

β

The same conclusions as in Benhabib and Nishimura [6] are then derived.

Under Assumption 2, the sign of the expression ǫcc
ǫdc

− ǫcd
ǫdd

is given by the
sign of the cross derivative ucd, i.e. by the opposite of the sign of ǫcd, ǫdc,
which is a crucial ingredient to determine the local stability properties of
the steady state. However, a degree-4 polynomial remains quite difficult to
analyze. But we easily notice from (12) that if the utility function is non-
strictly concave, i.e. if ǫcc

ǫdc
− ǫcd

ǫdd
= 0, then the degree-4 polynomial simplifies

to a product of two degree-2 polynomials which are then quite simple to
solve. We therefore introduce the following Assumption:

Assumption 4. The utility function u(c,Bd) is concave non-strictly, i.e.
ǫcc
ǫdc

− ǫcd
ǫdd

= 0.

3 Period-two cycles under non-strictly concave

preferences

As a preliminary result, we show that under the additional Assumption 4,
the characteristic roots cannot be complex
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Lemma 2. Under Assumptions 1-4, the characteristic roots are real.

Proof. See Appendix 7.3.

Following simultaneously the same methodologies as in the two-sector
optimal growth model and the optimal growth solution of the aggregate
OLG model, we discuss the local stability properties of equilibrium paths
depending both on the sign of the capital intensity difference across sectors
b and the sign of the cross derivative ucd, i.e. of the two elasticities ǫcd and
ǫdc.

We first provide with the following Proposition some simple conditions
ensuring the saddle-point property.

Proposition 2. Under Assumptions 1-4, if b ≥ 0 and ǫcd, ǫdc ≥ 0, i.e.
ucd ≤ 0, then the equilibrium path is monotone and the steady-state (k∗, d∗)
is a saddle-point.

Proof. See Appendix 7.4.

We now show that competitive equilibrium cycles may occur under a
quite large set of circumstances.

Proposition 3. Under Assumptions 1-4, the following results hold:
i) When the investment good is capital intensive, i.e. b ≥ 0, let ǫcd, ǫdc <

0, i.e. ucd > 0. Then the steady state (k∗, d∗) is saddle-point stable with
damped oscillations if and only if ǫcc ∈ (0,−ǫdc)∪ (−ǫdc/β,+∞). Moreover,
when ǫcc crosses the bifurcation values −ǫdc or −ǫdc/β, (k

∗, d∗) undergoes a
flip bifurcation leading to persistent period-2 cycles.

ii) When ǫcd, ǫdc ≥ 0, i.e. ucd ≤ 0, let the consumption good be capital
intensive, i.e. b < 0. Then the steady state (k∗, d∗) is saddle-point stable
with damped oscillations if and only if b ∈ (−∞,−1) ∪ (−β, 0). Moreover,
if there is some β∗ ∈ (0, 1) such that b ∈ (−∞,−β∗), then there exists
β̄ ∈ (0, 1) such that, when β crosses β̄ from above, (k∗, d∗) undergoes a flip
bifurcation leading to persistent period-2 cycles.

iii) When the consumption good is capital intensive, i.e. b < 0, and
ǫcd, ǫdc < 0, i.e. ucd > 0, the steady state (k∗, d∗) is saddle-point stable
with damped oscillations if and only if b ∈ (−∞,−1) ∪ (−β, 0) and ǫcc ∈
(0,−ǫdc) ∪ (−ǫdc/β,+∞). Moreover, if there is some β∗ ∈ (0, 1) such that
b ∈ (−1,−β∗), then there exists β̄ ∈ (0, 1) such that, when β crosses β̄ from
above or ǫcc crosses the bifurcation values −ǫdc or −ǫdc/β, (k

∗, d∗) undergoes
a flip bifurcation leading to persistent period-2 cycles.

Proof. See Appendix 7.5.
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Proposition 3 provides two independent mechanisms leading to the ex-
istence of endogenous fluctuations. The first one is based on the properties
of preferences through the sign of the cross derivative ucd and is the more
interesting as it allows to generate period-2 cycles in a two-sector model even
under a capital intensive investment good sector, a condition which is known
since Benhabib and Nishimura [7] to guarantee monotone convergence in a
standard optimal growth model. In order to provide an economic intuition,
let us consider an instantaneous increase in the capital stock kt. From the
equality ct + dt = T (kt, yt) and the fact that Tk > 0, we derive that ct in-
creases, and thus, using the fact that the marginal utility of second period
consumption ud is larger as udc > 0, a constant utility level u(ct, dt+1) can
be obtained from a decrease of dt+1. Consider then the first equation in
(10). We derive for a given dt+2

∆ct+1

∆ct
= udc

uccβ
+ udd

uccβ
∆dt+1

∆ct
< 0

It follows therefore from the equality ct+1 + dt+1 = T (kt+1, yt+1) that total
consumption at time t + 1 is lower, implying for a constant yt+1, a lower
capital stock kt+1. Endogenous fluctuations are thus generated from con-
sumption intertemporal allocations.

The second mechanism is, as in the two-sector optimal growth model,
based on the properties of sectoral technologies through the sign of the cap-
ital intensity difference across sectors. Following Benhabib and Nishimura
[7], we can use the Rybczinski and Stolper-Samuelson effects to provide a
simple economic intuition for this result. Assume indeed that the consump-
tion good is capital intensive, i.e. b < 0, and consider an instantaneous
increase in the capital stock kt. This results in two opposing forces:

- The trade-off in production becomes more favorable to the consump-
tion good, and the Rybczinsky effect implies a decrease of the output of the
capital good yt. This tends to lower the investment and the capital stock in
the next period kt+1.

- In the next period the decrease of kt+1 implies again through the Ry-
bczinsky effect an increase of the output of the capital good yt+1. Indeed
the decrease of kt+1 improves the trade-off in production in favor of the in-
vestment good which is relatively less intensive in capital and this tends to
increase the investment and the capital stock in period t+ 2, kt+2.

Of course, under both mechanisms, the existence of persistent fluctua-
tions require that the oscillations in consumption and relative prices must
not present intertemporal arbitrage opportunities. A minimum level of
myopia, i.e. a low enough value for the discount rate β, is thus necessary.
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Note finally that in case iii) of Proposition 3, both mechanisms hold at the
same time.

As a simple illustration, consider the case of a linear homogeneous utility
function. Both consumption levels are then normal goods and the concavity
is non-strict. Building on the homogeneity of degree 1, we introduce the
share of first period consumption within total utility φ(c, d) ∈ (0, 1) defined
as follows:

φ(c,Bd) = uc(c,Bd)c
u(c,Bd)

(13)

The share of second period consumption within total utility is similarly de-
fined as 1−φ(c,Bd) ∈ (0, 1). Moreover, the cross derivative ucd is obviously
positive.4 Focusing on the more interesting case where endogenous fluctua-
tions arise under a capital intensive investment good, we get the following
Corollary:

Corollary 1. Under Assumption 1, let the investment good be capital in-
tensive, i.e. b ≥ 0, and the utility function u(c,Bd) be linear homogeneous.
Then the steady state (k∗, d∗) is saddle-point stable with damped oscillations
if and only if φ ∈ (0, φ) ∪ (φ̄,+∞), with φ = 1/2 and φ̄ = 1/(1 + β). More-
over, when φ crosses the bifurcation values φ or φ̄, (k∗, d∗) undergoes a flip
bifurcation leading to persistent period-2 cycles.

Proof. See Appendix 7.6.

A particular example of a linear homogeneous utility function is provided
by the CES formulation such that:

u(c,Bd) = [θc−ρ + (1− θ)d−ρ]
−1/ρ (14)

with B = 1,5 θ ∈ (0, 1), ρ > −1, and where

φ(c, d) = θc−ρ

θc−ρ+(1−θ)d−ρ (15)

The ratio 1/(1 + ρ) provides the elasticity of substitution between c and d.
With such a formulation, we easily derive

c
d = βφ

1−φ =
(

βθ
1−θ

)
1

1+ρ

and considering given values for k∗ and T (k∗, k∗), the steady state d∗ is
given by

4These results are derived from concavity and standard Euler equalities for homo-
geneous functions, namely u(c,Bd) = uc(c,Bd)c + ud(c,Bd)Bd, 0 = ucc(c, Bd)c +
ucd(c,Bd)Bd and 0 = udc(c,Bd)c+ udd(c,Bd)Bd.

5We do not need to introduce a normalization constant B in such a simple example.
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d∗ = (1−φ)T (k∗,k∗)
1−φ(1−β) = T (k∗,k∗)

1+( θβ
1−θ )

1
1+ρ

∈ (0, T (k∗, k∗)) (16)

and obviously

c∗ = T (k∗, k∗)− d∗ = βφT (k∗,k∗)
1−φ(1−β) =

( θβ
1−θ )

1
1+ρ T (k∗,k∗)

1+( θβ
1−θ )

1
1+ρ

∈ (0, T (k∗, k∗)) (17)

Plugging these expressions into (15) gives

φ(c∗, d∗) = 1

1+β
ρ

1+ρ ( 1−θ
θ )

1
1+ρ

≡ φ(θ) (18)

and we easily get

lim
θ→1

φ(θ) = 1 and lim
θ→0

φ(θ) = 0 (19)

It follows therefore that there exist 1 > θ̄ > θ > 0 such that φ = φ(θ),
φ̄ = φ(θ̄) with

θ̄ = 1
1+β and θ = 1

1+β−ρ (20)

and the results of Corollary 1 hold.

4 Quasi-periodic cycles under strictly concave

preferences

Up to now we have simplified the analysis to the consideration of a non-
strictly concave utility function in order to reduce the degree-4 characteris-
tic polynomial to the product of two degree-2 polynomials. An illustration
of such utility function has been provided by a CES linear homogenous
specification as given by (21). In such a framework, we have shown that
the characteristic roots are necessarily real and that endogenous fluctua-
tions can occur through the existence of period-two cycles. But from an
empirical point of view, period-two cycles are associated to the unrealistic
property of negative auto-correlation of variables. In order to solve this prob-
lem, we need to focus on the existence of complex characteristic roots with
which quasi-periodic cycles occurring through a Hopf bifurcation can gen-
erate fluctuations that are compatible with positive auto-correlations. Such
a property is then required to provide an empirically relevant description of
long-run fluctuations of variables such as bequests.

We can start by providing general sufficient conditions allowing to rule
out the existence of complex roots.

Proposition 4. Under Assumptions 1-3, let the utility function u(c,Bd) is
be strictly concave. Then the roots of the characteristic polynomial (12) are
necessarily real in the following cases:
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i) for any sign of ǫcd, ǫcd if the investment good sector is capital intensive,
i.e. b > 0,

ii) if ǫcd, ǫcd > 0 and the consumption good sector is capital intensive,
i.e. b < 0.

Proof. See Appendix 7.7.

Necessary conditions for the existence of complex roots are therefore
based on the two mechanisms that generate endogenous fluctuations in the
non-strictly concave case, namely b < 0 and ǫcd, ǫcd < 0. In order to study
whether complex characteristic roots and a Hopf bifurcation with quasi-
periodic cycles can occur, let us consider now a particular class of strictly
concave utility function as given by the following generalized CES formula-
tion

u(c,Bd) = [θc−ρ + (1− θ)d−ρ]
−γ/ρ (21)

with B = 1, θ ∈ (0, 1), ρ > −1 and γ ∈ (0, 1]. Here γ is the degree of
homogeneity of u(c,Bd) which is thus strictly concave if γ < 1. We then
get the share of first period consumption within total utility

φ(c, d) = γθc−ρ

θc−ρ+(1−θ)d−ρ ∈ (0, γ) (22)

while the share of second period consumption within total utility is now
given by γ − φ(c, d).6 We then easily derive from the first order condition
udB = βuc and the fact that c∗ = T (k∗, k∗)− d∗

c
d = βφ

γ−φ =
(

βθ
1−θ

) 1
1+ρ

As in the case γ = 1, considering given values for k∗ and T (k∗, k∗), the
steady state d∗ is given by

d∗ = (γ−φ)T (k∗,k∗)
γ−φ(1−β) = T (k∗,k∗)

1+( θβ
1−θ )

1
1+ρ

∈ (0, T (k∗, k∗)) (23)

and obviously

c∗ = T (k∗, k∗)− d∗ = βφT (k∗,k∗)
γ−φ(1−β) =

( θβ
1−θ )

1
1+ρ T (k∗,k∗)

1+( θβ
1−θ )

1
1+ρ

∈ (0, T (k∗, k∗)) (24)

Moreover from (5)-(6) we get

ǫcd = − ǫcc
1−ǫcc(1−γ) , ǫdc = − (γ−φ)ǫcc

φ[1−ǫcc(1−γ)] , ǫdd = (γ−φ)ǫcc
φ−ǫcc(1−γ)(2φ−γ)

It is important to note here that, when expressed in terms of these elastici-
ties, the concavity of the utility function requires the following restriction:

6Standard Euler equalities for homogeneous functions become now γu(c, Bd) =
uc(c,Bd)c + ud(c,Bd)Bd, (γ − 1)uc(c,Bd) = ucc(c,Bd)c + ucd(c, Bd)Bd and (γ −

1)ud(c,Bd) = udc(c,Bd)c+ udd(c, Bd)Bd.
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Assumption 5. ǫcc < ǭcc ≡
γ

φ(1−γ)

Under this restriction, we obviously get ǫdd > 0 while ǫcd, ǫcd < 0 if and
only if ǫcc < 1/(1− γ) ≡ ǫ̃cc ∈ (0, ǭcc).

Assume now as in Baierl et al. [2] that the consumption and investment
goods are produced with Cobb-Douglas technologies as follows

y0 = kα0
0 l1−α0

0 , y = kα1
1 l1−α1

1 (25)

As detailed in Appendix 7.8, we can show that

k∗ = α0(1−α1)(βα1)
1

1−α1

α1[1−α0+β(α0−α1)]

T (k∗, k∗) =
(

α0(1−α1)
(1−α0)α1

)α0 (1−α0)(1−βα1)(βα1)
α0

1−α1

1−α0+β(α0−α1)

r∗ = Tk(k
∗, k∗) = α0

(

(1−α0)α1

α0(1−α1)

)1−α0

(βα1)
− 1−α0

1−α1

Tkk(k
∗, k∗) = −Tk(k

∗,k∗)
k∗

(1−α0)2

1−α0+βα1(α0−α1)

b = β(α1−α0)
1−α0

(26)

The degree-4 characteristic polynomial as given by Lemma 1 becomes
here

P(λ) =
[

λ2 + λ
(

(γ−φ)2+βφ2−βφǫcc(1−γ)(2φ−γ)
βφ(γ−φ)[1−ǫcc(1−γ]

)

+ 1
β

]

(λb−1)(λβ−b)
βb

− λ(λ− 1)
(

λ− 1
β

)

α0[1−α0+βα1(α0−α1)]
(1−α0)(1−βα1)(α0−α1)

ǫcc(1−γ)[γ−ǫccφ(1−γ)]
(γ−φ)[1−ǫcc(1−γ)]

(27)

We first provide sufficient conditions to ensure saddle-point property of
the steady state with real characteristic roots.

Proposition 5. Let the utility function and the sectoral production func-
tions be given respectively by (21) and (25), and assume that ǫcc < 1/(1−γ)
and α0 > α1 such that b ∈ (−∞,−1) ∪ (−β, 0). Then there exist 0 < φ <
φ̄ < γ and ǫ̂cc ∈ (0, ǫ̃cc) such that when φ ∈ (0, φ) ∪ (φ̄, γ) the characteristic
roots are real and the steady-state is saddle-point stable. Moreover,

i) when φ ∈ (φ̄, γ), the optimal path converges towards the steady state
with oscillations if ǫcc ∈ (0, ǫ̂cc) or monotonically if ǫcc ∈ (ǫ̂cc, ǫ̃cc),

ii) when φ ∈ (0, φ), the optimal path converges towards the steady state
with oscillations.

Proof. See Appendix 7.9.

Proposition 5 implies that the existence of complex roots, if any, requires
to consider values of φ such that φ ∈ (φ, φ̄). As we do not have any sufficient
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conditions to get complex characteristic roots that could have a modulus
equal to one, let us focus on a numerical illustration with b < 0 and ǫcd, ǫcd <
0. Considering that the annual discount factor is often estimated to be
around 0.96 and that one period in an OLG model is about 30 years, we
consider here that β = 0.9630 ≈ 0.294. Focusing on a slight deviation with
respect to the linear homogeneous case with γ = 0.98, let us then assume
a standard value ǫcc = 1 that satisfies ǫcc < ǭcc. We also consider α0 = 0.6
and α1 = 0.21 so that the consumption good is capital intensive with b ∈
(−β, 0). The bounds exhibited in Proposition 5 are equal to φ ≈ 0.38858
and φ̄ ≈ 0.865. We then find that the characteristic polynomial (27) admits
four characteristic roots λ1, λ2, λ3, λ4 that are complex conjugate by pair
with λ1λ2 > 1 and λ3λ4 < 1 if φ ∈ (φ, φH) ∪ (φ̄H , φ̄) while λ3λ4 > 1 if

φ ∈ (φH , φ̄H), with φH ≡ 0.5674 and φ̄H ≡ 0.6713. Moreover λ3λ4 = 1

when φ = φH or φ̄H . As a result φH and φ̄H are Hopf bifurcation values
giving rise to quasi-periodic cycles in their neighborhood.

We can then derive by continuity:

Proposition 6. Let the utility function and the sectoral production func-
tions be given respectively by (21) and (25), and assume that ǫcc < 1/(1−γ)
and α0 > α1 such that b ∈ (−∞,−1)∪ (−β, 0). Then there exist an open set
of values for (β, α0, α1, γ) with γ < 1 and two critical values φH , φ̄H ∈ (φ, φ̄)
such that the steady state (k∗, d∗) is saddle-point stable with damped oscil-
lations if φ ∈ (φ, φH) ∪ (φ̄H , φ̄). Moreover, when φ crosses the bifurcation

values φH or φ̄H , (k∗, d∗) undergoes a Hopf bifurcation leading to persistent
quasi-periodic cycles.

From a theoretical point of view, Proposition 6 provides a strong con-
clusion as it shows that a Hopf bifurcation and quasi-periodic cycles can
occur in a two-sector optimal growth framework as long as it is based on an
OLG structure with non-separable and strictly concave preferences. Such
a result is drastically different from what can be obtained in standard op-
timal growth models as the existence of complex roots requires to consider
at least three sectors.7 From an empirical point of view, Proposition 6 also
provides a strong conclusion which is related to the quasi periodicity of the
cycles leading to positive auto-correlations of variables. Such a property
is then required to provide an empirically relevant description of long-run
fluctuations of bequests. We need however to show now that the existence
of optimal endogenous cycles is compatible with strictly positive bequest
transmissions across generations.

7See Benhabib and Nishimura [6], Cartigny and Venditti [9], Venditti [17].
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5 The solution with altruistic agents and a be-

quest motive

Let us consider now a decentralized economy composed of overlapping gen-
erations of parents loving their children. As in the Barro [3] formulation,
each agent is altruistic towards his descendant through a bequest motive.
Parents indeed care about their child’s welfare by taking into account their
child’s utility into their own utility function. They are now price-takers,
considering as given the prices pt, wt and rt+1 as defined by (2) and (3), and
determine their optimal decisions with respect to their budget constraints

wt + ptxt = ct + st and Rt+1st = dt+1 + pt+1xt+1 (28)

with Rt+1 = rt+1/pt the gross rate of return, st the savings of young agents
born in t and xt the amount of bequest transmitted at time t by agents
born in t− 1. Note that bequest xt is expressed as an investment good and
requires the relative price pt to enter the budget constraints. In each period,
bequests must be non-negative:

xt ≥ 0 for all t ≥ 0 (29)

An altruistic agent has a utility function given by the following Bellman
equation

Vt(xt) = max
ct,dt+1,st,xt+1

{u(ct, Bdt+1) + βVt+1(xt+1)}

= max
{ct,dt+1,st,xt+1}

+∞
∑

t=0

βtu(ct, Bdt+1)
(30)

subject to (28) and (29). β is now interpreted as the intergenerational de-
gree of altruism. It is well-known from the first welfare theorem that this
altruistic problem is equivalent to the central planner problem (8), and the
equilibrium is the unique Pareto optimum which coincides with the cen-
tralized solution. However, such an equivalence requires the non-negativity
constraints of bequests (29) to hold with a strict inequality in order to pre-
serve the link across generations.

Denoting qt the shadow price of bequest xt, we define the generalized
Lagrangian associated to the optimization program (30)

L = u(ct, Bdt+1) + β
qt+1

pt+1
[Rt+1(wt + ptxt − ct)− dt+1]− qtxt

The first order conditions are the following
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uc(ct, Bdt+1) = βqt+1Rt+1

pt+1

ud(ct, Bdt+1)B = βqt+1

pt+1

βqt+1Rt+1pt
pt+1

≤ qt with an equality if xt > 0

Consider now the two budget constraints in (28) evaluated at the steady
state. Solving with respect to st using the fact that st = ptyt = ptkt+1 and
Rt+1 = rt+1/pt we get

p∗x∗
(

1− 1
R∗

)

= c∗ + d∗

R∗ − w∗ = T (k∗, k∗)− w∗ − d∗
(

1− 1
R∗

)

= (r∗k∗ − d∗)
(

1− 1
R∗

)
(31)

If x∗ > 0, i.e. r∗k∗ > d∗, then we derive from the fist order conditions that
R∗ = r∗/p∗ = β−1 and ud(c

∗, Bd∗) = βuc(c
∗, Bd∗), which are exactly the

same conditions as (11). We then obtain:

Proposition 7. Under Assumptions 1-4, for any β ∈ (0, 1), there exists a
unique value B∗ such when B = B∗, bequests are positive in the economy
with degree of altruism equal to β.

Proof. See Appendix 7.10.

When bequests are positive at the steady state, then by continuity there
are positive in a neighborhood of the steady state and the local stability
properties provided in Propositions 2, 3 and 6 hold. In particular, the
existence of optimal cycles and business fluctuations hold under positive
bequests.

In order to illustrate this result, let us consider first the example of a
linear homogeneous CES utility function as given by (21) with a Cobb-
Douglas production structure as given by (25). Using (16) and (26), we
derive that r∗k∗ > d∗ and thus x∗ > 0 if and only if

α0

(

βθ
1−θ

) 1
1+ρ

− (1− α0 − βα1) > 0

It follows immediately that if α1 > 1 − α0 and β > (1 − α0)/α1, then
1 − α0 − βα1 < 0 and x∗ > 0 for any θ ∈ (0, 1). The existence of periodic
cycles is thus compatible with positive bequests. Similarly, when α1 < 1−α0,
straightforward computations show that x∗ > 0 if and only if

θ > 1

1+
(

α0
1−α0−βα1

)1+ρ
β
≡ θ̃

Considering the bounds (20), it follows that the conditions of Corollary 1 for
the existence of period-2 cycles can be satisfied if θ̃ < θ. Sufficient conditions
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for this inequality to be satisfied are given by α1 ∈ (1 − 2α0, 1 − α0) and
β > (1 − α0)/(α0 + α1) ≡ β with β < 1. This example clearly shows that
when the degree of altruism is large enough, endogenous optimal fluctuations
are compatible with positive bequests. Moreover, this result holds for any
sign of the capital intensity difference across sectors.

It is worth noticing that if, under α1 ∈ (1 − 2α0, 1 − α0), we assume
that θ > θ̃ with θ̃ > θ̄, then bequests are positive but the conditions of
Corollary 1 for the existence of period-2 cycles cannot be satisfied and the
steady state is saddle-point stable. This inequality is satisfied if and only if
α1 ∈ (1 − 2α0, 1 − α0), α0 < 1/2 and β < (1 − 2α0)/α1. Therefore, if the
degree of altruism is not large enough, persistent endogenous fluctuations
cannot arise.

Let us finally illustrate the possible existence of quasi-periodic cycles
under positive bequests when the utility function is strictly concave as in
Section 4. Considering the formulation of Proposition 6, we provide here
conditions for a positive bequest in terms of the parameter φ. Using (23)
and (26), we derive that r∗k∗ > d∗ and thus x∗ > 0 if and only if

α0φβ − (γ − φ) (1− α0 − βα1) > 0

Consider then the particular illustration in Section 4 which is such that
1 − α0 − βα1 > 0 and α0 > α1. It follows that bequests are positive if and
only if

φ > γ(1−α0−βα1)
1−α0+β(α0−α1)

≡ φ̃

With γ = 0.98, α0 = 0.6 and α1 = 0.2, we get φ̃ ≈ 0.646 ∈ (φH , φ̄H).
It follows that positive bequests are compatible with quasi-periodic cycles.
Indeed, the steady state, which is characterized by strictly positive bequests
if φ > φ̃, is saddle-point stable with damped oscillations if and only if
φ ∈ (φ̄H , φ̄). Moreover, when φ crosses the bifurcation values φ̄H from
above, the steady state undergoes a Hopf bifurcation leading to persistent
quasi-periodic cycles.

6 Concluding comments

7 Appendix

7.1 Proof of Proposition 1

Consider in a first step the second equation in (11). Notice that the steady
state value for k only depends on the characteristics of the technologies
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and is independent from the utility function. Moreover, this equation is
equivalent to the equation which defines the stationary capital stock of a
standard two-sector optimal growth model. The proof of Theorem 3.1 in
Becker and Tsyganov [4] restricted to the case of one homogeneous agent
applies so that there exists one unique k∗ solution of this equation.

Consider now the first equation in (11) evaluated at k∗. We get:

ud(T (k∗,k∗)−d,Bd)B
uc(T (k∗,k∗)−d,Bd) ≡ h(d) = β (32)

The function h(d) is defined over (0, T (k∗, k∗)) and satisfies

h′(d) =
Budd
ud

−ucd
uc

+ucc
uc

−Bucd
ud

ucud
= −β

[

1
d

(

1
ǫdd

− 1
ǫcd

)

+ 1
c

(

1
ǫcc

− 1
ǫdc

)]

Assumption 3 implies that h′(d) < 0. This monotonicity property together
with the boundary conditions in Assumption 2 finally ensure the existence
and uniqueness of a solution d∗ ∈ (0, T (k∗, k∗)) of equation (32).

For a given k∗, consider a particular value d∗ = d̄ ∈ (0, T (k∗, k∗)). d̄ is a
steady state if

ud(T (k∗,k∗)−d̄,Bd̄)B
uc(T (k∗,k∗)−d̄,Bd̄)

≡ g(B) = β (33)

We easily get
g′(B) = −ud

uc

[

1
ǫdd

− 1
ǫcd

− 1
]

which is generically different from zero. Therefore, under the boundary
conditions in Assumption 2, there generically exists a unique value B∗ such
that when B = B∗, d∗ = d̄ is a normalized steady state.

7.2 Proof of Lemma 1

Using (5)-(6) and the fact that at the steady state −T ∗
y = βT ∗

k , total differ-
entiation of the first order equations (10) gives after tedious but straightfor-
ward computations:

−∆kt
βT ∗

k
ǫcc

ǫdc
+∆kt+1βT

∗
k

(

1 + βǫcc
ǫdc

)

+∆dt
βǫcc
ǫdc

−∆dt+1β
(

1 + βǫccǫcd
ǫdcǫdd

)

= ∆kt+2β
2T ∗

k −∆dt+2
β2ǫcc
ǫdc

∆kt

(

βT ∗2
k

ǫccc∗T ∗
kk

− b
)

−∆kt+1

(

β(1+β)T ∗2
k

ǫccc∗T ∗
kk

−∆− b2
)

−∆dt
βT ∗

k

ǫccc∗T ∗
kk

+ ∆dt+1
βT ∗

k

ǫccc∗T ∗
kk

(

1 + βǫcc
ǫdc

)

= −∆kt+2β
(

βT ∗2
k

ǫccc∗T ∗
kk

− b
)

+∆dt+2
β2T ∗

k

ǫccc∗T ∗
kk
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Denoting ∆ξt = ∆kt+1 and ∆ζt = ∆dt+1, we get the following matrix
expression of the previous linear system:











1 0 0 0
0 1 0 0

0 0 β2T ∗
k −β2ǫcc

ǫdc

0 0 −
(

βT ∗2
k

ǫccc∗T ∗
kk

− b
)

β2T ∗
k

ǫccc∗T ∗
kk



















∆kt+1

∆dt+1

∆ξt+1

∆ζt+1









=













0 0 1 0
0 0 0 1

−
βT ∗

k
ǫcc

ǫdc

βǫcc
ǫdc

βT ∗
k

(

1 + βǫcc
ǫdc

)

−β
(

1 + βǫccǫcd
ǫdcǫdd

)

βT ∗2
k

ǫccc∗T ∗
kk

− b
βT ∗

k

ǫccc∗T ∗
kk

−
β(1+β)T ∗2

k

ǫccc∗T ∗
kk

+ β + b2
βT ∗

k

ǫccc∗T ∗
kk

(

1 + βǫcc
ǫdc

)





















∆kt
∆dt
∆ξt
∆ζt









⇔ A









∆kt+1

∆dt+1

∆ξt+1

∆ζt+1









= B









∆kt
∆dt
∆ξt
∆ζt









with

A =

(

0 I
0 A22

)

and B =

(

0 I
B21 B22

)

Matrix A is invertible as

detA = detA22 = δ3bǫcc
ǫdc

and we get

A−1 =

(

0 I

0 A−1
22

)

=





T ∗
k

βbǫccc∗T ∗
kk

1
βb

ǫdc
β2ǫcc

(

βT ∗2
k

bǫccc∗T ∗
kk

− 1
)

ǫdcT
∗
k

βbǫcc





The linearized dynamical system can then be expressed as follows








∆kt+1

∆dt+1

∆ξt+1

∆ζt+1









= A−1B









∆kt
∆dt
∆ξt
∆ζt









=

(

0 I

A−1
22 B21 A−1

22 B22

)









∆kt
∆dt
∆ξt
∆ζt









≡ J









∆kt
∆dt
∆ξt
∆ζt









Tedious but straightforward computations give after simplifications the char-
acteristic polynomial

P(λ) = λ4 − λ3
[

βT ∗2
k

bǫccc∗T ∗
kk

(

ǫcc
ǫdc

− ǫcd
ǫdd

)

+ β+b2

βb + ǫdc
βǫcc

+ ǫcd
ǫdd

]

+ λ2
[

(1+β)T ∗2
k

bǫccc∗T ∗
kk

(

ǫcc
ǫdc

− ǫcd
ǫdd

)

+ β+b2

βb

(

ǫdc
βǫcc

+ ǫcd
ǫdd

)

+ 2
β

]

− λ
[

T ∗2
k

bǫccc∗T ∗
kk

(

ǫcc
ǫdc

− ǫcd
ǫdd

)

+ 1
β

(

β+b2

βb + ǫdc
βǫcc

+ ǫcd
ǫdd

)]

+ 1
β2
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After simplifications we get the expression (12).

7.3 Proof of Lemma 2

Under Assumption 4, let us denote the two degree-2 polynomials as follows

P1(λ) = λ2 − λ
(

ǫdc
βǫcc

+ ǫcd
ǫdd

)

+ 1
β , P2(λ) =

(λb−1)(λβ−b)
βb

(34)

The discriminant of P1(λ) is equal to:

∆1 =
(

ǫdc
βǫcc

+ ǫcd
ǫdd

+ 2√
β

)(

ǫdc
βǫcc

+ ǫcd
ǫdd

− 2√
β

)

Using (5)-(6) we get

∆1 =
(

1
ucd

)2 (

ucc +
2ucd√

β
+ udd

β

)(

ucc −
2ucd√

β
+ udd

β

)

=
(

1
ucd

)2 (

1 1√
β

)

(

ucc ucd
udc udd

)

(

1
1√
β

)

×
(

1 − 1√
β

)

(

ucc ucd
udc udd

)

(

1
− 1√

β

)

Under the concavity property in Assumption 2, the Hessian matrix of the
utility function u(c, d) is quasi-negative definite which implies β1 ≥ 0 and the
associated characteristic roots are necessarily real. From P2(λ) we obviously
conclude that for any sign of the capital intensity difference b the associated
characteristic roots are also necessarily real.

7.4 Proof of Proposition 2

Under Assumptions 1-4, let b ≥ 0 and ǫcd, ǫdc ≥ 0, i.e. ucd ≤ 0. Using the
fact that ǫcc

ǫdc
= ǫcd

ǫdd
, we derive the following expression

P1(λ) =
(

λ− ǫcc
ǫdc

)(

λ− ǫdc
βǫcc

)

(35)

The associated characteristic roots λ1 and λ2 are therefore both positive.
Moreover we get:

P1(0) = 1
β ≥ 1

P1(1) = −ǫccǫdc

(

1
ǫcc

− 1
ǫdc

)(

1
βǫcc

− 1
ǫdc

)

The normality Assumption 3 implies P1(1) < 0 and we conclude that the
associated characteristic roots λ1 and λ2 are such that λ1 < 1 and λ2 > 1.
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From P2(λ), the associated characteristic roots λ1 and λ2 are both pos-
itive. Moreover we derive:

P2(0) =
1
β ≥ 1, P2(1) = − (β−b)(1−b)

βb

From constant returns to scale, we get wa01 + ra11 = p with a01 = l1/y and
a11 = k1/y. The second equation in (11) rewrites as p = βr. We then obtain
after substitution in the previous equation r(β − a11) = wa01 > 0 and thus

β − b = a00(β−a11)+a10a01
a00

> 0

When b ≥ 0 we then necessarily have b < β ≤ 1. It follows that P2(0) < 0
and we conclude that the associated characteristic roots λ1 and λ2 are such
that λ1 < 1 and λ2 > 1. The steady state is therefore a saddle-point.

7.5 Proof of Proposition 3

i) Under Assumptions 1-4, let b ≥ 0 and ǫcd, ǫdc < 0, i.e. ucd > 0. As
shown previously, we derive from P2(λ) = 0 that there exist two positive
characteristic roots, one being lower than 1 and the other larger. From
P1(λ) as given by (35), the associated characteristic roots λ1 and λ2 are
both negative. Moreover, we get:

P1(−1) =
(

1 + ǫcc
ǫdc

)(

1 + ǫdc
βǫcc

)

= (ǫcc+ǫdc)(βǫcc+ǫdc)
βǫccǫdc

We conclude easily that

P1(−1) < 0 ⇔ ǫcc ∈ (0,−ǫdc) ∪ (−ǫdc/β,+∞)

P1(−1) > 0 ⇔ ǫcc ∈ (−ǫdc,−ǫdc/β)

It follows that the steady state is a saddle-point with damped oscillations
when ǫcc ∈ (0,−ǫdc)∪ (−ǫdc/β,+∞) and there exists a flip bifurcation with
persistent period-2 cycles when ǫcc crosses the bifurcation values −ǫdc or
−ǫdc/β.

ii) Under Assumptions 1-4, let ǫcd, ǫdc ≥ 0, i.e. ucd ≤ 0, and b < 0.
As shown previously, we derive from P1(λ) = 0 that there exist two posi-
tive characteristic roots, one being lower than 1 and the other larger. From
P2(λ), the associated characteristic roots λ1 and λ2 are both negative. More-
over we get:

P2(−1) = (1+b)(b+β)
βb

We conclude easily that

P1(−1) < 0 ⇔ b ∈ (−∞,−1) ∪ (−β, 0)

P1(−1) > 0 ⇔ b ∈ (−1,−β)
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It follows that the steady state is a saddle-point with damped oscillations
when b ∈ (−∞,−1) ∪ (−β, 0). Moreover, if there is some β∗ ∈ (0, 1) such
that b ∈ (−∞,−β∗), then there exists β̄ ∈ (0, 1) such that, when β crosses β̄
from above, (k∗, d∗) undergoes a flip bifurcation leading to persistent period-
2 cycles.

iii) The case where the consumption good is capital intensive, i.e. b < 0,
and ǫcd, ǫdc < 0, i.e. ucd > 0, is obviously derived from the two previous
cases.

7.6 Proof of Corollary 1

Under a linear homogeneous utility function, standard Euler equalities based
on the homogeneity of degree 1, namely u = ucc + udBd, 0 = uccc+ ucdBd
and 0 = udcc+ uddBd, lead to

ucd = −ucc

Bd , udc = −uddBd
c and thus udd = ucc

(

c
Bd

)2

Moreover, we get from the first order condition udB = βuc and (13)

c
Bd = βφ

1−φ

Substituting all this into (5)-(6) implies

ǫcd = −ǫcc, ǫdc = −ǫcc
1−φ
φ , ǫdd = ǫcc

1−φ
φ

The result follows from Proposition 3.

7.7 Proof of Proposition 4

The characteristic polynomial (12) can be expressed as follows
[

λ2 − λ
(

ǫdc
βǫcc

+ ǫcd
ǫdd

)

+ 1
β

]

(λb−1)(λβ−b)
βb = λ(λ− 1)

(

λ− 1
β

)

βT ∗2
k

bǫccc∗T ∗
kk

(

ǫcc
ǫdc

− ǫcd
ǫdd

)

or equivalently, using the notations of Lemma 2,

P1(λ)P2(λ) = P3(λ)

with P3(λ) a degree-3 polynomial while P1(λ)P2(λ) is a degree-4 polynomial.
If these two polynomials intersect four times, then the four characteristic
roots are real. To determine the number of intersections of these polyno-
mials, we can use informations derived from the location of their respective
roots. The roots of P3(λ) = 0 are quite obvious, namely λ31 = 0, λ32 = 1
and λ33 = 1/β. Moreover, depending of the sign of ǫcd, ǫdc we get
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- if ǫcd, ǫdc < 0, then ǫcc
ǫdc

− ǫcd
ǫdd

> and limλ→+∞ P3(λ) = −∞ while
limλ→∞

P3(λ) = +∞;
- if ǫcd, ǫdc > 0, then ǫcc

ǫdc
− ǫcd

ǫdd
< and limλ→+∞ P3(λ) = +∞ while

limλ→∞
P3(λ) = −∞;

The roots of P1(λ)P2(λ) = 0 are obviously given by the respective roots
of P1(λ) = 0 and P2(λ) = 0.

i) Assume first that b > 0. We have shown in the proof of Proposition 2
that b < β ≤ 1. The roots of P2(λ) = 0 are then quite obvious, namely λ21 =
1/b > 1 and λ22 = b/β < 1. Finally, the roots of P1(λ) = 0 are necessarily
real and negative if ǫcd, ǫdc < 0, or positive if ǫcd, ǫdc > 0. Moreover, we have
limλ→±∞ P1(λ)P2(λ) = +∞ and P1(0)P2(0) > 0.

If ǫcd, ǫdc < 0, we derive from the above informations that
P1(b/β)P2(b/β) = 0 > P3(b/β) while P1(1)P2(1 < P3(b/β) = 0 implying
a first intersection between P1(λ)P2(λ) and P3(λ) in the positive orthant.
Moreover, since P1(1/β)P2(1/β) < P3(1/β) = 0 while P1(1/b)P2(1/b) =
0 > P3(b/β), we get a second intersection P1(λ)P2(λ) and P3(λ) in the pos-
itive orthant. Since P1(0)P2(0) > 0, P1(λ)P2(λ) = 0 admits two roots in
the negative horthant, P3(0) = 0 and P3(λ) is an increasing function in
the negative hortant, we conclude that there necessarily exists a third in-
tersection between P1(λ)P2(λ) and P3(λ) in the positive orthant. The last
intersection, which also occurs in the negative orthant, is obtained because
limλ→−∞ P1(λ)P2(λ) > limλ→−∞ P3(λ). Indeed P3(λ) a degree-3 polyno-
mial while P1(λ)P2(λ) is a degree-4 polynomial. We then get the following
graphical illustration

It follows that the four roots of the characteristic polynomial (12) are
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real.
If ǫcd, ǫdc > 0, the roots of P3(λ) = 0 and P2(λ) = 0 are the same

as before while the roots of P1(λ) = 0 are now real and positive. Since
P1(0)P2(0) > 0, P1(1/b)P2(1/b) = 0 and P1(1)P2(1) > 0, there necessarily
exists a second root of P1(λ)P2(λ) = 0 between 0 and 1/b implying two
intersections between P1(λ)P2(λ) and P3(λ). The two others are obtained
since P1(1/β)P2(1/β) > P3(1/β) = 0, P1(b/β)P2(b/β) = 0 < P3(b/β) and
limλ→+∞ P1(λ)P2(λ) > limλ→+∞ P3(λ). We then get the following graphical
illustration

Here again, it follows that the four roots of the characteristic polynomial
(12) are real.

ii) Assume now that b < 0 and ǫcd, ǫdc > 0. The roots of P2(λ) = 0
become negative, namely λ21 = 1/b < λ22 = b/β < 0. We easily get
P1(0)P2(0) > 0, P1(1)P2(1) < P3(1) = 0,P1(1/β)P2(1/β) < P3(1/β) = 0,
limλ→+∞ P1(λ)P2(λ) = +∞ and limλ→+∞ P3(λ) = −∞. It follows that
there are three intersections between P1(λ)P2(λ) and P3(λ) in the positive
orthant. Moreover, we have limλ→−∞ P1(λ)P2(λ) > limλ→−∞ P3(λ) imply-
ing the existence of two additional intersections between P1(λ)P2(λ) and
P3(λ) in the negative orthant. We then get the following graphical illustra-
tion
and it follows that the four roots of the characteristic polynomial (12) are
real.
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7.8 The Cobb-Douglas example

We follow the same methodology as in Baierl et al. [2]. Consider the Cobb-
Douglas production functions as given by (25). The Lagrangian associated
with the optimization program (1) is:

L = kα0
0 l1−α0

0 +w
(

1− l0 − l1
)

+ r
(

k − k0 − k1
)

+ p
[

kα1
1 l1−α1

1 − y
]

(36)

The first order conditions are:

r = α0k
α0−1
0 l1−α0

0 = pα1k
α1−1
1 l1−α1

1 (37)

w = (1− α0)k
α0
0 l−α0

0 = p(1− α1)k
α1
1 l−α1

1 (38)

Using k0 = k − k1, l0 = 1− l1, and merging the above equations gives:

l∗0 =
(1− α0)α1(k − k∗1)

(α0 − α1)k∗1 + (1− α0)α1k
(39)

l∗1 =
α0(1− α1)k

∗
1

(α0 − α1)k∗1 + (1− α0)α1k
(40)

K∗
c = k − k∗1 (41)

k∗1 = g(k, y) ≡ g (42)

where

g(k, y) =
{

k1 ∈ [0, kα1 ] / y = [α0(1−α1)]1−α1k1
[(1−α0)α1k+(α0−α1)k1]1−α1

}

(43)

From the envelope theorem we get:

Tk = r∗, Ty = −p∗
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From (37), (39) and (41) we obtain:

r∗ = α0

[

(1−α0)α1

(1−α0)α1k+(α0−α1)g

]1−α0
(44)

and from (37), (40), (42) and (44):

p∗ = α0[(1−α0)α1]1−α0 [α0(1−α1)]−(1−α1)[(1−α0)α1k+(α0−α1)g]α0−α1

α1
(45)

By the derivation of g, we have, for any equilibrium path, the identity (1−
α0)α1k + (α0 − α1)g = α0(1− α1)(g/y)

1/(1−α1 ). Substituting this into (44)
and (45) gives after simplifications:

Tk(k, y) = α0

(

(1−α0)α1

α0(1−α1)

)1−α0 (
y
g

)

1−α0
1−α1

Ty(k, y) = −α1
β1

(

(1−α0)α1

α0(1−α1)

)1−α0 (
y
g

)

α1−α0
1−α1

Tkk(k, y) = −Tk(k, y)
g1
g

with g1 = ∂g(k, y)/∂k. A steady state k∗ is then defined as Tk(k
∗, k∗) +

βTy(k
∗, k∗). Denote g∗ = g(k∗, k∗) and y∗ = k∗. Using the derivatives of T

in the definition of k∗ gives:

g∗ = βα1k
∗ (46)

Substituting (46) into the definition of g, we find

k∗ = α0(1−α1)(βα1)
1

1−α1

α1[1−α0+β(α0−α1)]
(47)

Considering (43), we easily derive

g1 =
βα1(1−α0)(1−α1)
1−α0+β(α0−α1)

(48)

From all these results and (4), we get

c∗ = T (k∗, k∗) =
(

α0(1−α1)
(1−α0)α1

)α1 (1−α0)(1−βα1)(βα1)
α0

1−α1

1−α0+β(α0−α1)

r∗ = Tk(k
∗, k∗) = α0

(

(1−α0)α1

α0(1−α1)

)1−α0

(βα1)
− 1−α0

1−α1

Tkk(k
∗, k∗) = −Tk(k

∗,k∗)
k∗

(1−α0)2

1−α0+βα1(α0−α1)

b = β(α1−α0)
1−α0
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7.9 Proof of Proposition 5

The characteristic polynomial (27) can be expressed as Q1(λ) = Q2(λ) with

Q1(λ) ≡ 1
γ−φ

[

λ2(γ − φ) + λ
(

(γ−φ)2+βφ2−βφǫcc(1−γ)(2φ−γ)
βφ[1−ǫcc(1−γ]

)

+ (γ−φ)
β

]

(λb−1)(λβ−b)
βb

Q2(λ) ≡ 1
γ−φλ(λ− 1)

(

λ− 1
β

)

α0[1−α0+βα1(α0−α1)]
(1−α0)(1−βα1)(α0−α1)

ǫcc(1−γ)[γ−ǫccφ(1−γ)]
[1−ǫcc(1−γ)]

Considering the limit φ → γ we immediately conclude that one root λ1 is
necessarily real and equal to ±∞ and we get

Q1(λ) = λγ (λb−1)(λβ−b)
βb

Q2(λ) = λγ(λ− 1)
(

λ− 1
β

)

α0[1−α0+βα1(α0−α1)]
(1−α0)(1−βα1)(α0−α1)

ǫcc(1− γ)

It follows that a second root λ2 is real and equal to 0. Computing now the
derivatives Q′

1(λ) and Q′
2(λ), and evaluating them at 0 gives

Q′
1(0) = 1

β

Q′
2(0) = 1

β
α0[1−α0+βα1(α0−α1)]
(1−α0)(1−βα1)(α0−α1)

ǫcc(1− γ)

It follows that Q′
1(0) ≷ Q′

2(0) if and only if ǫcc ≶ ǫ̂cc with

ǫ̂cc ≡
(1−α0)(1−βα1)(α0−α1)

(1−γ)α0[1−α0+βα1(α0−α1)]
∈ (0, ǫ̃cc)

We conclude therefore that there exist two additional intersections between
Q1(λ) and Q2(λ) implying that the two last characteristic roots λ3, λ4 are
also real. Let us then assume that b ∈ (−∞,−1) ∪ (−β, 0). We derive that

i) if ǫcc < ǫ̂cc then Q′
1(0) > Q′

2(0) with Q1(1/b) = Q1(b/β) = 0 which
implies that one intersection must occur between −1 and 0, say λ3 ∈ (−1, 0).
Moreover we derive also that λ1 = −∞ and λ4 < −1;

ii) if ǫcc ∈ (ǫ̂cc, ǫ̃cc) then Q′
1(0) < Q′

2(0) with Q2(1) = 0 which implies
that one intersection must occur between 0 and 1, say λ3 ∈ (0, 1). Moreover
we derive λ1 = +∞ and λ4 > 1.
We then conclude by continuity that there exists 0 < φ̄ < γ such that when
φ ∈ (φ̄, γ), the above results hold with λ1 ∈ (−∞,−1) and λ2 ∈ (−1, 0)
when ǫcc < ǫ̂cc or λ1 ∈ (1,∞) and λ2 ∈ (0, 1) when ǫcc ∈ (ǫ̂cc, ǫ̃cc).

Note now that the characteristic polynomial (27) can be also expressed
as Q1(λ) = Q2(λ) with

Q1(λ) ≡ 1
φ

[

λ2φ+ λ
(

(γ−φ)2+βφ2−β(γ−φ)ǫcc(1−γ)(2φ−γ)
βφ[1−ǫcc(1−γ]

)

+ φ
β

]

(λb−1)(λβ−b)
βb

Q2(λ) ≡ 1
φλ(λ− 1)

(

λ− 1
β

)

α0[1−α0+βα1(α0−α1)]
(1−α0)(1−βα1)(α0−α1)

ǫccφ(1−γ)[γ−ǫccφ(1−γ)]
(γ−φ)[1−ǫcc(1−γ)]

Considering the limit φ → 0 we immediately conclude that one root λ1 is
necessarily real and equal to −∞ as b < 0, and we get
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Q1(λ) = λγ2

β[1−ǫcc(1−γ)]
(λb−1)(λβ−b)

βb

Q2(λ) = 0

It follows that λ2 = 0, λ3 = 1/b and λ4 = b/β with one larger than −1 and
the other lower than −1 as b ∈ (−∞,−1) ∪ (−β, 0). We then conclude by
continuity that there exists 0 < φ < φ̄ such that when φ ∈ (0, φ), the above
results hold with λ1 ∈ (−∞,−1) and λ2 ∈ (−1, 0).

7.10 Proof of Proposition 7

As shown in the proof of Proposition 1, there exists a unique steady
state (k∗, d∗) solution of equations R∗ = r∗/p∗ = β−1 and ud(c

∗, Bd∗) =
βuc(c

∗, Bd∗). Moreover, k∗ does not depend on the utility function
u(c,Bd). Since the stationary bequest x∗ is strictly positive if and only
if r∗k∗ = Tk(k

∗, k∗)k∗ > d∗, let us consider a particular value d∗ = d̄ ∈
(0,min{Tk(k

∗, k∗), Tk(k
∗, k∗)k∗}). Then, for any β ∈ (0, 1), the same argu-

ment as in the proof of Proposition 1 holds: there generically exists a unique
value B∗ such that when B = B∗, d∗ = d̄ is a normalized steady state such
that x∗ > 0.
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