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Abstract

Carbon dioxide emissions impose a social cost on economies, owing to the damages they
will cause in the future. In particular, climate change may trigger tipping points in the
climate or economic system. Tipping points induce higher expected damages and risk
that damages may be catastrophic, both of which increase the Social Cost of Carbon.
However, the respective contributions of higher expected damages and risk have not been
disentangled. In this article, we develop a methodology to compare how much expected
damages explain the Social Cost of Carbon, compared to the risky nature of a stochastic
tipping point. We analyze the conditions under which approaches relying on expected
damages underestimate the Social Cost of Carbon in the presence of tipping points. We
�nd that it takes productivity shocks higher than 10%, for risk aversion to play a role,
which is on the high end of the range of damages commonly assumed in Integrated As-
sessment Models. Deterministic approaches are suitable to estimate SCC for lower shocks.

Keywords: Climate change; Tipping points; Expected utility; Integrated Assessment
Models; Risk; Social Cost of Carbon

JEL Classi�cation: C61, H41, Q54

∗Corresponding author
Email address: taconet@centre-cired.fr (Nicolas Taconet)



1. Introduction

There is a consensus that climate change will induce damages in the future, although the
range of possible levels for these damages is uncertain. Some consider climate change to
be worrysome because damages will be high, others because there is a small chance they
could be catastrophic. In the former case, optimal climate policy arises from a simple
intertemporal cost-bene�t analysis, while in the latter case, emissions reductions result
from a precautionary approach as an insurance against the risk of disastrous impacts.

This tension between two potential sources for the harmfulness of climate change
can be found in the categorization of the �Reasons for Concerns� (RFC) by the Inter-
governmental Panel on Climate Change. How much do �Aggregate impacts� (RFC 4)
play a role, compared to the �Risk of large-scale singular events� (RFC 5), such as the
breakdown of the thermohaline circulation? The latest assessment of the severity of each
Reason for Concern (O'Neill et al., 2017) shows that additional risk due to climate change
jumps from moderate to high around the same temperature for both of these Reasons
for Concern, suggesting that they contribute by the same magnitude to making climate
change worrisome.

However, the balance between both Concerns is not a done deal among climate
economists. For instance, Pindyck (2013) and Weitzman (2009) argue that catastrophic
outcomes should be the primary driver of climate mitigation. Broome (2010), wondering
�whether the most important thing about climate change is the harm it is likely to cause
or alternatively the utter catastrophe that it may possibly � though very improbably �
cause�, gave an opposing view. One the one hand, previous literature emphasizes the
impact of the level of expected damages on optimal emissions (Weitzman, 2012; Pizer,
2003; Dumas and Ha-Duong, 2005; Ackerman and Stanton, 2012; Wouter Botzen and
van den Bergh, 2012), with some arguing that damage estimates should be revised up-
ward (Dietz and Stern, 2015; Weitzman, 2012)). Indeed, estimates of climate damages
are subject to numerous uncertainties and limitations (see Diaz and Moore (2017) for
a recent review). On the other hand, other authors put forward this uncertainty as a
reason to dismiss the use of deterministic damage functions to represent the impacts of
climate change (Pindyck, 2013). Thus, damage functions have been criticized both for
the di�culty to determine the best-guess expected damages, and that to model the risk
of catastrophic outcomes.

This question of �level� versus �risk� is particularly salient in the case of non-marginal
or abrupt changes referred to as �tipping points� (Lenton et al., 2008; Alley et al., 2003;
Ste�en et al., 2018). Examples of such phenomena include the shutdown of thermohaline
circulation, the melting of the Arctic sea-ice or the die back of the Amazonian rainforest,
but it could also come from the limited ability of social and economic systems to cope
with climate conditions past some threshold.

Tipping points stand in sharp contrast with deterministic damage functions, which
have been traditionally used in Integrated Assessment Models. In his initial calibration
of the DICE model, Nordhaus included a 30% increase in the damage estimates as a way
to account for the expected damages from catastrophes (Nordhaus, 1994). Conversely,
explicit modeling of tipping points found a signi�cant e�ect on optimal policy (Mastran-
drea and Schneider, 2001; Keller et al., 2004; Lemoine and Traeger, 2014b; Lontzek et al.,
2012). But since tipping points raise expected damages, this e�ect could be due to this
increase rather than the stochastic nature of the tipping points. Both methodologies of
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dealing with tipping points, either by a change of the damage function, or explicit mod-
eling of tipping points have not been compared. When integrating tipping points into a
model, authors have not separated changes due to risk aversion to the realization of the
tipping point from those coming from a mere increase of expected damages. They fail to
disentangle whether tipping points matter from a level or risk perspective, and whether
a deterministic approach using expected damages is a good proxy for calculations of the
SCC.

Ackerman et al. (2010) and Dietz (2011) have performed similar exercises on the �fat
tail� of climate sensitivity, comparing SCC with risk on parameters for climate sensitivity
with that when using the expected value for climate sensitivity, but they relied on Monte
Carlo procedure to capture risk, which only gives the expected value of the Social Cost
of Carbon (i.e. the present social value of an additional emission of carbon, hereafter
SCC), not the shadow price of carbon along an optimal path facing risk. A comparison
of SCC under parametric uncertainty �nds that methods relying on expected damages
tend over-estimate optimal emissions (Crost and Traeger, 2013). This kind of analysis
has not been performed under the possibility of stochastic tipping points.

Since the damage function is the least-grounded aspect of Integrated Assessment
Models, and it has a strong impact on the SCC, it is essential to build rigorous method-
ologies that compare how di�erent representations of damages a�ect the SCC (Guivarch
and Pottier, 2018; Pottier et al., 2015). For instance, whether the possibility of tipping
points changes SCC solely because they raise the estimates for expected damages, or
because they impose a risk that society is not willing to take.

In this article, we analyze the respective contribution of level (expected damages)
and risk in the case of a stochastic tipping point inducing a productivity shock. We
use an Integrated Assessment Model to calculate the SCC under two settings: one with
a stochastic tipping point, and one with a modi�ed deterministic damage function to
capture the expected damages of the tipping point. That way, we are able to highlight
how much expected damages drive the SCC, and under which conditions deterministic
approaches lead to underestimate the SCC. We analyze the in�uence of preferences of
the decision maker and the nature of the catastrophe on our results.

We �nd that explicit modeling of the tipping point and our approach relying on
expected damages lead to similar values for the SCC, suggesting that expected damages
explain most of the value for the SCC. This results holds as long as we stay within the
range of productivity shocks usually considered in the literature. However, under both
rhigh productivity shocks and high risk aversion, precaution to avoid the tipping point
drives abatement, so that using a deterministic method underestimates the SCC, and
becomes ill-suited to compute its value.

Our �ndings o�er a possible explanation for the so-called risk aversion puzzle. Pre-
vious literature found that risk aversion played a modest role in IAMs like DICE, even
when using Epstein-Zin preferences (Ackerman et al., 2013), and in the case of non-
linear threshold (Belaia et al., 2014). Our results suggest that too low levels of damages
considered in these studies could be responsible for the the low in�uence of risk aversion.

We begin by laying out the model and methodology we use to model catastrophes
and build a deterministic equivalent 2. Results using di�erent welfare speci�cations are
discussed in section 3. Section 4 concludes.

3



2. Methodology

We use a simple Integrated Assessment Model, which we present in section 2.1, to cal-
culate the Social Cost of Carbon. We then explain in section 2.2 our methodology to
assess the contribution of expected damages and risk, and the values we explore for the
parameters of the model.

2.1. The model

An Integrated Assessment Model is meant to capture the main crossed interactions be-
tween the economy and the climate system. On the one hand, growth and technological
choices drive the level of greenhouse gas emissions causing changes in the climate system,
which a�ect back the economy. This allows to derive optimal emissions path from the
point of view of a utilitarian social planer balancing costs of mitigation and damages of
climate change, and to calculate the marginal damages caused by emissions � the SCC.

We use a classical DICE-like model, building on the Ramsey-Caas-Koopmans frame-
work (Guivarch and Pottier, 2018). The economy produces a single good in quantity
Qt using two factors, capital Kt and labour Lt through a Cobb-Douglas function. The
productivity is a�ected by climate change via a damage function Ωt depending on tem-
perature Tt, so that �nal production Qt writes:

Qt = Ω(Tt)AtK
α
t L

1−α
t (1)

The production induces emissions, which can be mitigated at a certain cost. The
social planer trades o� between consumption, mitigation costs (which represents a share
Λt of production), and investment in capital (share st of production)

Ct = Qt(1− Λt − st) (2)

Λt = θ1(t)µθ2t (3)

Kt+1 −Kt = −δ.Kt +Qt.st (4)

where δ is capital depreciation, and µt the abatement rate. θ1(t) measures total
mitigation costs and decreases exogenously due to technical progress.

The di�erence with DICE equations concerns the climate system. There is growing
evidence that temperature change depends linearly on cumulated emissions (Allen et al.,
2009; Matthews et al., 2009; Goodwin et al., 2015), owing to the fact that e�ects from
oceanic absorption of heat and carbon compensate. Modeling the temperature response
to cumulated emissions with a linear function is common speci�cation in the literature
(Dietz, 2011; Lemoine and Traeger, 2014a), and it reduces computational burden of
dynamic programming.

Tt = β.(CE0 +

t∑
s=0

Es) (5)

where Tt is the global temperature increase at time t, CE0 are cumulated emissions
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up to the �rst period of the model and Es the emissions at time s.

Et = σt(1− µt)Qt (6)

where σt is the carbon content of production that decreases exogenously over time,
and µt the abatement rate.

The tipping point is described as a stochastic phenomenon leading to a productivity
shock, in line with van der Ploeg and de Zeeuw (2013); Lontzek et al. (2015), because
our purpose is to remain as general as possible. Such a change in the damage function
can potentially apply to a large range of tipping points inducing larger damages than
expected. It can be direct impact on the economy either caused by melting of ice caps,
leading to severe sea-level rise; a slowing down of thermohaline circulation; or a social
tipping point past which adaptation is no longer possible. Other studies consider that the
tipping point can also a�ect climate variables such as climate sensitivity or depreciation
rate of atmospheric carbon dioxide to re�ect saturation of sinks (Lemoine and Traeger,
2014a).

Ω(Tt) =
1

1 + πT 2
t

(7)

Once the tipping point has been crossed, damages write:

Ω(Tt) =
1− J

1 + πT 2
t

(8)

J is the strength of the productivity shock.

We model the trigger of the tipping point using an endogenous hazard rate. At each
timestep there is a probability ht(Tt, Tt−1) � conditional to non-crossing previously �
to cross the tipping point. The probability is simply assumed to be equally distributed
between two temperatures Tmin and Tmax. Besides, we suppose that the decision maker
knows that visited temperature are safe, as in Lemoine and Traeger (2014a), so that she
updates priors if the tipping point has not been crossed. This means that the marginal
hazard rate tends to increase, as temperatures get warmer.

ht =
Tt −max(Tmin, Tt−1)

Tmax −max(Tmin, Tt−1)
(9)

This learning is essential to prevent the crossing from being unavoidable, unlike in
other works (van der Ploeg and de Zeeuw, 2013; Lontzek et al., 2015). Without any
learning, there is no hedging strategy : mitigation actions only delay the expected time
of crossing the tipping point, but there is no possibility to avoid it, even if temperatures
stabilize. With learning, mitigation actions can avoid the tipping point.

The model seeks the welfare-maximizing path for two state variables, capital and
cumulated emissions, choosing the path for the two control variables, the saving rate
st and the abatement rate µt. We study two functional form for welfare: the classical
Constant Relative Risk Aversion (CRRA), and Epstein-Zin preferences. In the CRRA
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representation, time and risk preferences are embedded in a single parameter, which
gives both resistance to intertemporal substitution and risk aversion. However, both can
induce opposing-directions e�ects in the presence of risks: while resistance to substitution
favors the consumption of present generations, risk aversion encourages more abatement
in the present to lower the risk of triggering the tipping point. For this reason, we also
apply Epstein-Zin preferences, which allow to disentangle intertemporal substitution and
risk aversion.

Welfare after time t, Ut, is de�ned recursively:

• For classical expected utility preferences

Ut = [(1− 1

1 + ρ
)ut +

1

1 + ρ
E(Ut+1)] (10)

where ρ is the pure time preference, and utility at each time step is given by:

ut(Ct, Lt) = Lt
(Ct/Lt)

1−η

1− η
(11)

η is the elasticity of marginal utility.

So that we can de�ne Bellman functions as follows:

Vt = max
yt

[u(xt, yt) +
1

1 + ρ
E(Vt+1(G(xt, yt)))] (12)

• For Epstein Zin preferences. :1

Ut = [(1− 1

1 + ρ
)ut +

1

1 + ρ
E(U1−γ

t+1 )
1−θ
1−γ ]

1
1−θ (13)

ut(Ct, Lt) = Lt
(Ct/Lt)

1−θ

1− θ
(14)

For the sake of clarity we use di�erent notations in the Epstein-Zin case. We denote
θ the inverse of the elasticity of intertemporal substitution, and γ the risk aversion
parameter.

We can de�ne Bellman functions in order to solve this dynamic program. Vt =
U1−θ
t

1− 1
1+ρ

Vt = max
yt

[u(xt, yt) +
1

1 + ρ
f(Vt+1(G(xt, yt)))] (15)

f accounts for the decision maker's attitude toward the risk of tipping.2. f(Vt+1) =

[E(V
1−γ
1−θ
t+1 )]

1−θ
1−γ . It is the same formula as for CRRA preferences, in which f = E.

1The formula holds for θ<1. Otherwise when θ > 1 utility function is negative, so that Ut =

−(−(1− 1
1+ρ

)u+ 1
1+ρ

[Et(−Ut+1)1−γ ]
1−θ
1−γ )

1
1−θ

2when 0 < ψ < 1, the recursive formula involves ut − 1
1+ρ

f(−Vt+1)
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Figure 1: Comparison between di�erent damage functions.

Using dynamic programming, we �rst approximate Bellman functions in the post-
threshold world, and then in the pre-threshold world using expectations over the impact
of the tipping event.

The Social Cost of Carbon can be expressed, thanks to envelop theorem, using Bell-
man function. If St is the stock of emissions, SCC writes:

SCCt = − 1

1 + ρ

∂SE(Vt+1)|xt+1

∂CVt|(xt,y∗t )
(16)

yt = (Λ, st) are control variables while xt = (St,Kt) are state variables. * denotes
values that are taken along the optimal path.

2.2. Building a deterministic equivalent

We calculate the Social Cost of Carbon under two settings:

• SCC under the risk of a stochastic tipping point, as modelled above

• SCC with no risk, where damages at a given temperature are set at the expected
level of damages accounting for a potential tipping point.

The second setting can be understood as a deterministic equivalent of a tipping point,
using an 'expected damage function' instead of a damage function subject to a stochastic
productivity shock. Thus, for each stochastic run with the risk of a tipping point, we run
the optimization problem in a deterministic fashion, using an �expected damage function�
instead of the damage function subject to a stochastic productivity shock (see �g 1). The
expected damage function writes:

Ωd(Tt) = (1− p(Tt))Ω1(Tt) + p(Tt)Ω2(Tt) (17)

where p(Tt) is the prior probability of having crossed the tipping point at temperature
Tt. Comparing SCC between the stochastic and deterministic runs tells us how much
SCC is explained by expected damages versus by risk aversion.
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2.3. Calibration of the parameters

We use typical range of possible values for parameters related to attitude toward risk and
time. Pure rate of time preference (ρ) can take three values: 0.1%, 0.5% and 1.5%. In the
CRRA case, elasticity of marginal utility (η) ranges from 0.5 to 3. For the Epstein-Zin
case, concerning the intertemporal substitution (1/θ), θ is between 0.5 and 3, while γ
ranges from 0.5 to as high as 20 .

For the parameters describing the tipping point, we acknowledge that the impacts
of such phenomenon are very di�cult to quantify and could be very large. We thus
explore a large window for the productivity shock J , from 1 to 50%. The location of
the trigger is also uncertain, and could be anywhere between current temperature and
Tmax = 7◦C. Starting from an initial temperature increase of 0.8◦C compared to pre-
industrial times, this means for instance that a 2◦C increase is associated with a 19%
probability of triggering the tipping point. For robustess checks on this assumption, see
Supplementary Information.

3. Results and discussion

In this section, we present the results, �rst when using CRRA preferences, then with
Epstein-Zin preferences where risk aversion and the inverse of the elasticity of intertem-
poral substitution di�er.

3.1. With CRRA preferences

We calculate the SCC under the two settings, in the deterministic case and for stochastic
tipping point. We analyze the ratio between the two, for di�erent values for the param-
eters representing preferences and damages due to the tipping point. The closer to one
the ratio, the more expected damages explain the SCC. We plot contour lines for the
ratio in the space of elasticity of marginal utility and damages due to tipping point (η, J)
in �gure 2 (top panel). We also plot contour lines for the absolute value of the SCC in
the stochastic tipping point case (�gure 2, bottom panel).

With CRRA preferences, elasticity of marginal utility (η) plays a role both in in-
termporal trade-o�s and risk aversion. On the one hand, a higher elasticity of marginal
utility tends to favor present consumption relative to future consumption of wealthier
generations (and thus less abatement). On the other hand, it encourages mitigation of
emissions to reduce the likelihood of triggering the tipping point. As far as the absolute
level of the SCC in the stochastic case is concerned, of these opposing e�ects of elasticity
of marginal utility, we �nd that the intertemporal substitution e�ect outweigh the risk
aversion e�ect. For a given J , the SCC decreases when η increases.

As the decision maker only faces expected damages in the deterministic equivalent,
there is no risk, and only the intertemporal substitution plays a role. This explains why
a deterministic equivalent underestimates SCC compared to a stochastic run, and does
so more as η increases. However, we �nd that it takes both high productivity shocks
and high elasticity of marginal utility for the deterministic approach to signi�cantly
underestimate SCC. In fact, expected damages explain more than 90% of the SCC, as
long as the productivity shock is inferior to 10%, whatever the value for risk aversion in
the range explored. As impacts become greater than 10%, using a deterministic approach
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for underestimates SCC. Only with productivity shocks higher than 40% jointly with
elasticity of marginal utility higher than 2 does risk amount to half of the contribution
of SCC.

Though lower pure rate of time preference (ρ) signi�cantly raises the level of the SCC,
it does so with similar magnitudes in both methods, so that the ratio of SCC found with
the two methods is similar in the cases of ρ = 0.5 and ρ = 1.5 (see graphs in Annex).
The value of the time preference considered does not change the conclusion that it takes
both high productivity shocks and high elasticity of marginal utility for the deterministic
approach to signi�cantly underestimate SCC.

3.2. When disentangling risk aversion and intertemporal substi-

tution

We perform the same exercise when disentangling risk aversion and elasticity of intertem-
poral substitution, using Epstein-Zin speci�cation for preferences. We present an illus-
tration of the results in the space of risk aversion parameter and damages due to the
tipping point (γ, J) for θ = 1.5 and ρ = 1.5% in �gure 3 (additional graphs for di�erent
values can be found in Appendix). For a given level of productivity shock, the value of
the SCC increases with the risk aversion parameter γ, as this parameter has an intuitive
in�uence in a single direction (�gure 3, bottom panel). The contour plot of the ratio of
SCC deterministic on SCC stochastic presents a hyperbolic shape (�gure 3, top panel),
re�ecting that it takes both low risk aversion and low damages to have deterministic run
be a good proxy for the SCC. For instance, for a productivity shock equal to 10%, the
risk aversion parameter has to be lower than 4 to have the ratio of SCC deterministic on
SCC stochastic higher than 0.9. Productivity shocks higher than 25%, combined with
risk aversion parameters higher than 5, lead to the deterministic approach underesti-
mating the SCC by a factor 2 at least. For a productivity shock equal to 40% and a
risk aversion parameter equal to 5, the deterministic SCC represents only 20% of the
stochastic SCC.

Graphs in Annex show the same results for alternative values for the elasticity of
intertemporal substitution (θ = 1.5) and for the pure time preference (ρ = 0.5). An
decrease in the elasticity of substitution (a higher θ) tends to decrease the absolute value
of SCC, but it does not a�ect the comparison between stochastic and deterministic runs.
Indeed, θ plays a similar role in both types of runs by governing the trade-o� between
future consumption and present one. For the same reason, changes in utility discount
rate (ρ) do not a�ect much the shape or position of the contours of the SCC ratios.

4. Discussion and Conclusion

Climate change is an issue in terms of inter-temporal distribution of welfare because of the
damages it will impose on future generations. What makes these damages remarkable
is that they are uncertain: is it their expected level or the uncertainty surrounding
them that warrants undertaking mitigation actions? This question has been studied for
many types of uncertainty, for instance regarding climate sensitivity or other critical
aspects of the climate-economy system, but has not been applied to stochastic tipping
points. Authors considering tipping points in Integrated Assessment Models have not
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Figure 2: Contour of share of SCC explained by expected damages (ratio of SCC deterministic on SCC
stochastic) and SCC (in US $2005) for stochastic runs, CRRA preferences
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Figure 3: Contour plot of the share of SCC explained by expected damages (ratio of SCC deterministic
on SCC stochastic) and SCC (in US $2005) for stochastic runs, Epstein-Zin preference
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studied how explicit modeling of these phenomena di�ered from standard treatment of
uncertainty via expected damage.

In this article, we have developed a methodology to evaluate how expected damages
versus aversion to the realization of tipping points contribute to the Social Cost of Car-
bon. We compare a setting with explicit modeling of the tipping point to a deterministic
setting using an equivalent damage function. Di�erence of SCC between the two methods
are attributable to the e�ect of risk aversion.

Using conventional CRRA preferences, it takes high productivity shocks and risk
aversion for a deterministic approach to underestimate SCC. Even when using Epstein-
Zin preferences, the share of SCC attributable to risk aversion remains limited (less than
10%) under shocks a�ecting 10% of production and risk aversion of 10.

Productivity shock of 10% are in the range typically considered in the literature.
For instance, in Lontzek et al. (2015), with a similar framework, authors consider the
case of J = 10%. Other modeling choices, in Lemoine and Traeger (2014a), make a
tipping point induce a change to a sextic damage function, i.e. Weitzman's damage
function. Weitzman's deterministic damage function relied on an expert panel that
explicitly considered physical tipping points, but still leads to a loss of less than 10%
of Gross World Product for 4◦C. Our results suggest that the increase of SCC found in
these studies are mostly due to a raise in expected damages, and that tipping points are
rather a 'level' than a 'risk' problem.

Finally, our work sheds some light on the risk aversion puzzle, found in previous work,
that is that risk aversion had a surprisingly little e�ect in Integrated Assessment Models
(Ackerman et al., 2013), even in the case of tipping points (Belaia et al., 2014). We show
that risk aversion only plays a role when considering very high possible damage levels,
with the risk of losing a few tenths of production. Below these levels, an IAM is sensitive
to expected damages, so that risk aversion plays a moderate role. Thus, we think that
too low levels of possible damages considered in the literature explain the risk aversion

puzzle.
Deterministic approaches using best-guess expected damages (together with sensitiv-

ity analyzes) are currently used to set a value for the SCC for regulations evaluations, and
they have lower computational burden. Thus, knowing when deterministic approaches
can be used as a good proxy for computing SCC under risk can guide policy making. Our
results show that the Social Cost of Carbon comes primarily from the expected level of
damages, when the shock induced by a potential tipping point remains lower than 10%
or so. In that case, deterministic damage functions are appropriate. However, it is not
possible to rule out higher shocks induced by tipping points. A very small number of
studies explore the possibility of such large shocks as large as 90 % of consumption (Di-
etz, 2011), or possible extinction (Méjean et al., 2017). In the latter case, deterministic
approaches are not suitable anymore and risk aversion plays a major role.
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