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1 Introduction

Air pollution massively affects the environment we live in, thereby our health. Air pollution

is multifaceted: the air breathed by urban population contains particulate matters of various

sizes, and diverse gases. Quasi experimental evidence on mortality, in the real life setting, is

accumulating (e.g. (Currie and Neidell, 2005), (Chay and Greenstone, 2003)). Morbidity has

recently received significant attention.1 But so far, the impact of the very diverse pollutants

has mostly been studied separately, without accounting for the other pollutants in presence.

Pollutants’ concentrations often vary together: disentangling their separate impact is a difficult

task. Meanwhile, some are strongly anticorrelated (e.g. nitrogen oxides and ozone), which

makes the approximation of considering air pollution as a whole dubious. Moreover, from a

public policy perspective, reducing one pollutant emissions or another may imply very distinct

regulation or taxation, at least because they may come from distinct sources. In a context

where not all pollutants’ concentrations follow the same time trends and are not all tackled as

efficiently, it is highly relevant to document further their separate health effects. For instance,

in France over the last fifteen years, while sulfur dioxide concentration is strongly going down,

followed sluggishly by particulate matters and nitrogen oxides, ozone maintained its level and

even slightly increased since the early 2000s.

In this paper, we use a novel set of numerous instruments combined with optimal instru-

ments selection to disentangle the separate effects of six pollutants from each other. Recent

techniques, as put forward in (Belloni et al., 2012), allow us to select instruments in an opti-

mal way, avoiding ad-hoc selection and enhancing precision in a setting where we decisively

need it. Indeed, to our knowledge, no study has succeeded in precisely measuring the impact

of several pollutants at the same time.2 For instance, if (Arceo et al., 2016) derive convincing

evidence of the impact of air pollution on infant mortality in Mexico City, they are not conclu-

1For example, papers leveraging some exogenous variations from the transportation sector include (Schlenker
and Walker, 2015) and (Moretti and Neidell, 2011), who study pollution shocks (respectively from carbon monox-
ide and ozone) due to plane idling or boat traffic near airport and harbour

2One exception is (Schlenker and Walker, 2015) which find an effect of CO on respiratory health nearby Cali-
fornian airports, even when controlling for NO2. We here consider on top of these two, four pollutants, importantly
ozone and particulate matters.
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sive on which pollutant(s) to incriminate, be it particulate matters or carbon monoxide. Going

further than the impact of an aggregate measure of air pollution is still an open question in the

small but growing literature linking causally health and air pollution. The main challenge lies

in finding enough appropriate instruments that influence differently distinct air pollutants. The

need for instrumentation comes from various sources of possible confounders to draw a causal

chain from air pollution to health, such as socio-economic and economic levels or weather vari-

ations.3 Some of this bias can be accommodated with fixed effects (seasonal, location-specific).

Some of these variables (e.g. weather characteristics) are observed so can be controlled for. But

without instrumentation, functional forms hypotheses and measurement errors may become a

first-order problem.

The instruments we use are derived from numerous altitude weather characteristics: some of

them are well known to impact air pollutant concentrations independently of human activities.

Urban air pollution mainly comes from anthropogenic sources, but the atmosphere dynamics,

through wind and sunlight for example, plays a key role in its mixing, chemistry and dispersion

and thus in ambient air pollution inhaled by population. Instruments from altitude weather

variables are not new: thermal inversion phenomena (see below for more details) were used

by (Jans et al., 2018), (Arceo et al., 2016) and (Chen et al., 2018), while surface weather

conditions as wind strength and directions were used by (Deryugina et al., 2016) and (Anderson,

2015). The originality here is to use a large set of altitude4 weather conditions, and let the data

speak on the strongest relationships. We also rely on a very simple novel instrument: the height

of the planetary boundary layer, under which air pollutants are trapped:5 roughly, the higher the

height of the planetary boundary layer, the larger the air volume available for pollutants, and

the lower the concentration. Indeed, in a first step and before calling selection techniques, we

show thanks to this single instrument that air pollution understood as a whole, measured with
3Quasi experimental evidence complement other studies by paying considerable attention at dealing with con-

founding factors (Currie et al., 2011).
4We use altitude weather conditions and not surface weather conditions as instruments to ensure the validity of

the exclusion restriction assumption.
5In fact, (Schwartz et al., 2016) use PBL height and wind strength as an instruments to study daily deaths caused

by air pollution in Boston. Our first set of results is derived under a method which is quite close to this paper (a
classical IV), but we here consider on top of mortality, emergency admissions, and improve on the external validity
of the study by considering the ten largest urban areas of France.
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an index, has a detrimental effect on health. But we might find many other and more complex

phenomena linking altitude weather variables to ground-level pollution, even conditional on

ground-level weather, by leveraging the rich set of instruments at hand. To that end, we use

optimal instruments selection in a high dimensional set of altitude weather variables. We heavily

rely on the econometric theory by (Belloni et al., 2012) and (Chernozhukov et al., 2015).6 The

instrument which has first been put forward by simple physics, the inverse of boundary layer

height, should also be selected as dictated by the data. We expect, on top of its selection, to

capture relationships between atmosphere parameters and pollutants in a data-driven manner,

hopefully leveraging different relationships for each pollutants.

We rely on five rich datasets that provide a daily perspective from 2010 to 2015 in the

ten largest urban areas of France. We observe six pollutants monitoring: particulate matters

of less than 2.5 micrometers PM2.5, of less than 10 micrometers PM10, carbon monoxide

CO, nitrogen dioxide NO2, ozone O3, sulfate dioxide SO2. Ground-level weather data comes

from Météo France. As for health, we observe emergency admissions in hospital belonging

to the urban areas under consideration. For altitude weather variables, we rely on the output

of a general climate model LMDZ, from the Laboratoire de Météorologie Dynamique.7 This

model among others contributes to fueling Intergovernmental Panel on Climate Change (IPCC)8

reports (See (Hourdin et al., 2006) and (Dufresne et al., 2013)).

Our analysis is twofold. First, we show that air pollution affects urban population health

through several outcomes: respiratory and cardiovascular emergency admissions, but also mor-

tality rate. Moderate variations of air pollution, at modern levels in Europe urban areas, are

therefore costly. For the method, we rely on a simple instrument which is suggested by the

atmosphere dynamics and has well-known effects on air pollution. In this first setting, air

pollution is understood as an aggregate of distinct pollutants. Second, optimal instruments

selection with LASSO leads to different selected variables per pollutants, therefore suggesting

sufficiently distinct first order relationships between pollutants and atmospheric conditions. The
6For another application, in a different context, see (Gilchrist and Sands, 2016)
7http://lmdz.lmd.jussieu.fr/
8In French, GIEC, Groupe d’experts intergouvernemental sur l’évolution du climat
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instrument which has first been put forward by simple physics, the inverse of boundary layer

height, is also selected in the very first variables for three pollutants, as found by the data. This

reduced set of instruments is then used in a two-stage least squares with several pollutants.

Our results shows that ozone, sulfur dioxide and carbon monoxide do have an effect on

respiratory health, independently from each other and even after controlling for the other pol-

lutants. Quantitatively, we find 4.5% more respiratory admissions when O3 goes up by + 10

µg/m−3 (or about half a standard deviation), 5.5% more respiratory admissions when SO2 goes

up by + 1 µg/m−3 and 0.6% more respiratory admissions when CO goes up by + 100 µg/m−3

(or about half a standard deviation). Most of these aggregate effects are driven by emergency

admissions of newborns, infants and young children. In addition, we find an effect of PM2.5 on

the mortality rate (+ 10 µg/m−3 leads to +1.8% of the mortality rate) and of CO on cardiovas-

cular diseases emergency admissions (+ 100 µg/m−3 leads to +1.5% emergency admissions).

As a falsification test, we perform similar analysis on an unrelated yet very common emergency

admissions: digestive diseases. By contrast with the other health indicators, the absence of

significant effects comforts the causal link.

The article proceeds as follows. In the second section, we start by presenting jointly the

data and the mechanisms at work. Then, we present and discuss the empirical strategy and the

instruments’ selection procedure in the third section. Finally, we present our results and then

conclude.

2 Data and background

In this section, we describe the data sources which have all in common the following scope:

the ten most populated urban areas in France over the 2010-2015 period. Table 1 reports the

population, and Figure 1 the geographical location and extension of urban areas. The largest

urban area is the Paris region where more than twelve millions people live. Most of the other

urban areas have about a million inhabitants. The urban areas are well spread out on the French

territory.
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Table 1: The ten most populated urban areas in France

Urban area Population in thousands

All age 0-4 over 70

Paris 12, 470 845 1, 203
Lyon 2, 259 152 249
Marseille - Aix-en-Provence 1, 744 103 231
Toulouse 1, 312 81 137
Bordeaux 1, 195 67 135
Lille 1, 182 80 111
Nice 1, 006 52 171
Nantes 934 61 97
Strasbourg 777 45 89
Rennes 708 46 70

For Lille and Strasbourg urban area, only the French part is considered.
Source: 2013 census

Within these urban areas, many cities do have worrying air pollution levels. Figure 3 in

appendix shows the annual mean of particulate matters in cities belonging to the ten urban

areas, compared to WHO guidelines. The vast majority of cities and in particular the most

populated do not respect the guidelines for yearly means in 2014. For instance, Rennes, the

smallest urban area in our sample, do not respect the guidelines relative to particulate matters

of less than 2.5µm.

2.1 Atmospheric weather characteristics

Mechanisms. The air near the ground (the planetary boundary layer, PBL) is sensitive to fric-

tion forces with the surface. These forces become negligible in the upper layers where wind

circulation is global (the free atmosphere). In short, the planetary boundary layer (PBL) is the

layer of air that is stuck to the ground. Pollutants are trapped within this vicinity of the earth,

whose depth is defined by its height. The concentration of pollutants trapped in the layer de-

pends on its height, with a dilution effects on the vertical axis. When higher, the volume of

air available for pollutants is higher, thus their concentration lower. In this paper, we first rely

on this simple physics phenomenon, namely the variations of PBL height, to causally evidence

a detrimental impact of air pollution on the respiratory system of urban population. This phe-

nomenon may be rather similar from one pollutant to the other, so one can only use it as an
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Figure 1: Geographic location of the ten most populated urban areas in France (black areas),
LMDZ grid (blue dotted lines) and points representing the urban areas on this grid (cyan cross).
(Source: Insee, 2010)

instrument for ambient air pollution as an aggregate statistics.

PBL height varies according to various factors. First, the height of the planetary boundary

layer responds to heating flux between the sun and the earth and therefore display a diurnal

pattern. Second, the planetary boundary layer height reacts to subsidence, which brings the top

of the layer downward in a high pressure diverging area. Third, it may be modified when a

horizontal movement of cold air brings it under a warmer layer of air (frontal inversion at the

top of the planetary boundary layer).9 If some of these phenomena do have a seasonal nature

and are partially related to ground-level weather, there is no reason to expect that health would

be affected by these phenomena conditional on seasonal and ground-level weather conditions.

This makes PBL height a strong candidate for instrumentation.

Planetary boundary layer height is often defined by the presence of a thermal inversion at

the top: the temperature, which usually decreases with height, sharply increases at the top of the

9See (Stull, 2016) for further details.
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PBL.10 A thermal inversion acts as a lid over the air motion beneath, because an air parcel which

is cooler than its environment tends to move down. Its role over pollutants’ concentrations is

widely acknowledged. Thermal inversions are thus closely related to boundary layer height

(during the day, it is a thermal inversion that defines the boundary layer height) but they may be

multiple and varying in strength within the boundary layer height. During a thermal inversion,

polluted air is trapped beneath the inversion height (a warmer layer of air blocks the vertical

movement). Thermal inversions have been used by other authors to instrument air pollution (on

mortality in developing countries city (Arceo et al., 2016) and closer to us, (Jans et al., 2018)).

However, whereas thermal inversions may or may not happen (dummy variable), the height of

the planetary boundary layer may always be defined (and is a continuous variable).

Therefore, aside its height, other characteristics related to the planetary boundary layer may

influence directly pollutants’ concentrations: among other, winds and thermal inversions phe-

nomena. Interactions may play a strong role. There is a wide set of potential candidate which

fulfils the conditional exclusion restriction.

Data. The data come from the LMDZ model (Hourdin et al., 2006), a general circulation

model maintened by the Laboratoire de météorologie dynamique (Z is for zoom).11 It simulates

the full atmosphere over a 3D grid. The development of the model is tested and improved by

comparison with atmospheric observations (field or satellite data).

We were provided the output of an hourly reconstitution of the atmosphere dynamics from

2010 to 2015 along a grid ≈ 50km x 50 km in which cities are located (the model is used

with a zoomed version over France, see Figure 1). Many variables are present, most impor-

tantly, the boundary layer height; but also along a vertical grid parameterizing altitude through

pressure levels, wind characterizations (direction, strength), humidity, temperature, and altitude

corresponding to the pressure levels. In particular, the measurement of temperature at differ-

10During a thermal inversion, warmer air is held above cooler air; the normal temperature profile with altitude
is inverted.

11The LMDZ model is the atmosphere component of the climate model described in (Dufresne et al., 2013) and
used for IPCC reports; see http://lmdz.lmd.jussieu.fr/ for a general presentation
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ent altitudes allows to reconstitute thermal inversions indicators within the boundary layer, as

we observe temperature gradient. We aggregate the variables at the daily level (considering

different statistics or hour-of-the-day) to match health data.

A large set of potential instruments. The PBL height is directly obtained from the model

output at the hourly level between the 01/01/2010 to the 01/01/2015. We consider a daily

measure specific to six moments of the day: 0 to 4a.m., 4 to 8 a.m, · · · , until 8p.m. to midnight.

As for thermal inversions, we compute thermal inversions from temperature altitude profile. At

the hourly level, we define a thermal inversion when at least 50% of the layers between 10.1

hPa (≈200 m) and 89,7 hPa (≈ 1,2 km) have temperature above temperature at ground level

(in the lower layer). We also consider a simpler measure of inversion similar to (Jans et al.,

2018): we take only two layers (ground-level and at 98.1 hPa ≈450m) and define a thermal

inversion when ground-level temperature is the lowest, and an additional measure of thermal

inversion strength: the difference of these two temperatures. Then, we average these two hourly

dummies coding the presence of an inversion, and its strength, at six moments of the day, as

for PBL height. For the other weather variables varying with altitude (humidity, temperature,

pressure, zonal wind, meridian wind, wind strength), we compute the average at the daily level

and exclude all measures below 98.1 hPa to assert exogeneity.

2.2 Ground-level weather data

Weather conditions play a key role in human activity and air pollution formation, but also di-

rectly on health (Deschênes and Greenstone, 2007). Plus, ground-level weather data is likely

correlated to atmospheric data, so that it is important to condition on ground-level weather in

our regression, the assumption being that high altitude atmospheric variations are exogenous

with respect to health, except through pollution, conditional on ground-level weather controls.

We hence consider a full set of weather conditions. Data come from Météo France and are

available on an hourly basis for our ten urban areas. We consider seven weather parameters :

temperature, rainfall, wind speed, wind direction, insolation and humidity. We also consider

three day-level dummies coding for (1) snowfall, (2) presence of a snow cover over the ground,
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(3) presence of ice. Measurement stations are located at nearby airport12, except for Paris, where

the measurement station is located in a garden in the center of Paris (parc Montsouris).

2.3 Pollutant data

Air quality is measure by regional associations called AASQA (associations agréées de surveil-

lance de la qualité de l’air), which are grouped in a national federation called ATMO France.

They are approved by the Ministry of Environment which delegates the mission of air pollution

surveillance of “regulated” pollutants. They operate numerous air quality measurement stations

all over France. We consider the stations located in the 10 more populated urban areas. We

focus on a rich set of air pollutants: the 6 pollutants that are widely available on an hourly

basis are carbon monoxide (CO), particulate matter of less than 2.5 micrometers (PM2.5), par-

ticulate matter of less than 10 micrometers, nitrogen dioxide (NO2), ozone (O3) and sulfur

dioxide (SO2). We usually have data for several measurement stations per urban area,13 which

we average at the urban area and daily level on a constant set of monitoring stations.

When using a single instrument and due to the strong correlation between air pollution emis-

sions, we can only gauge the impact of ambient air pollution as a summary statistics of avail-

able pollutants’ concentrations. We thus create a pollutant index with a principal component

analysis over the 6 standardized pollutants concentration and keep the first component as the

pollution index.14 As we have missing values in pollutant concentration, the PCA is combined

with an EM algorithm to deal with missing values (See (Josse and Husson, 2012)). The index

is therefore available eventhough one or several pollutant concentrations are missing (keeping

observations for which all six pollutants are observed leads to drop 80% of the sample).

Table 2 shows how pollutants are correlated. Two important points should be noted for what

follows. First, PM2.5 are a subsample of PM10 (60 to 70% of PM10 particulates are PM2.5

12Specifically for insolation in Lille, we use the measurement station in Lillers, nearby Lille, as this parameter
was not available in Lille-Lesquin airport station over the whole studied period.

13We have at least one measurement station for each pollution in each urban area.
14 (Arceo et al., 2016) use a similar index approach when considering the joint effect of PM10 and CO.
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particulates according to Airparif15). To preview our results, we will not be able to disentangle

their effect separately as we will find no clear distinction in their response to our instruments.

Second, O3 is anticorrelated with all pollutants, in particular to its precursors NO2 and CO. On

average, high levels of nitrogen oxides are associated to low levels of ozone. This emphasizes

the multi-dimensional aspect of air pollution, which should ideally not be treated as a whole.

Table 2: Correlation between pollutants’ concentrations

Pollution index PM2.5 PM10 NO2 O3 CO SO2

Pollution index 1 0.84 0.80 0.65 −0.56 0.67 0.31
PM2 5 0.84 1 0.83 0.40 −0.32 0.46 0.27
PM10 0.80 0.83 1 0.53 −0.14 0.40 0.26
NO2 0.65 0.40 0.53 1 −0.22 0.69 0.24
O3 −0.56 −0.32 −0.14 −0.22 1 −0.40 −0.08
CO 0.67 0.46 0.40 0.69 −0.40 1 0.22
SO2 0.31 0.27 0.26 0.24 −0.08 0.22 1

The dynamics of O3 is singular for several reasons. It is link to the fact that O3 is a sec-

ondary pollutant: NO2 is precursor of O3 in the reaction NO2 + O2 ↔ NO + O3. There is

at least two effects under the anticorrelation of O3 with the other pollutant: NO2 disappears on

the process of producing O3 in a slow reaction (to a lesser extent it is also the case for CO).

Additionally, primary pollutant NO is unstable and reacts quickly with O3, and it usually pro-

duced in conjunction with PMs by traffic. The latter is known as the urban decrement: primary

pollution can at first reduce the concentration in O3 at the local level.16

These elements emphasize how ambient air pollution is multifaceted. In particular, ozone is

not easily captured by a pollution index.

15Bilan de la qualité de l’air 2017
16A simple way to explain it from (Munir et al., 2012): At the local level freshly emitted nitric oxides (NO)

produced by road-traffic react with ozone molecules and produce nitrogen dioxides (NO2). Hence road-traffic
provides a local sink for ground level ozone resulting in ozone concentration in urban areas being lower than the
surrounding rural areas. This phenomenon of lower ozone concentration in urban areas is referred to as ozone
urban decrement.
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2.4 Health data

The data is obtained from the ATIH (Agence Technique de l’Information Hospitalière) that

gather an administrative and exhaustive database which record all admissions in public and pri-

vate hospitals. Its primary use is to compute hospitals’ funding based on their activity. By final

diagnostic and by urban area in which the hospital is located, we were provided the daily count

of emergency admissions. Further, this information breaks down by age groups: newborns (0-

28 days), infants (≥ 29 days, ≤ 1 year-old), and a 5-years breakdown (0-4, 5-9, up to 75-79

plus over 80). More precisely, an emergency admission is an entrance through the hospital

emergency unit that led to an admission from patients coming from their residence (i.e. not

transferred from another hospital) or from public space.17 Therefore, programmed admissions,

long-term and recurring care are excluded. The diagnostic used here is coded at the end of the

patient stay. It represents the main diagnostic which gave rise to the highest care resources.

When and only when a diagnostic is not reached, the code is relative to the observed symptoms.

We divide the daily count of admissions by the age-range and urban-area corresponding popu-

lation (2013 legal population produced by Insee). Our variable of interest is the emergency rate

of admission per 100 000 inhabitants.

In addition, we consider mortality rates constructed from daily records in civil registry (as

produced by Insee at the municipality level), which are aggregated for each of our urban area

and by age groups. After similarly normalizing with the legal population, our variable of interest

is the mortality rate per 100 000 inhabitants.

3 Empirical strategy

We are thus faced with a large set of potential variables whose exogeneity with respect to health

is asserted with the same reasoning: the maintained exclusion restriction is that unexpected

altitude weather phenomena, once controlled for unexpected ground-level weather, do not in-

fluence health except through air pollution. Unexpected shocks are variations out of seasonal
17When due to hospital organization, emergency room is the main entry point, doctors should not use the code

”emergency” systematically but only when the individual situation in the views of the patient, his relatives or his
general practitioner is an emergency.
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variations. These fluctuations in altitude variables are governed by air movement rules (pressure

differentials, geographical landscape, heat differential absorption...) which are unlikely to af-

fect health by themselves. Therefore, the exclusion restriction maintained here applies to a high

number of instruments, which are possibly interacting (for example, solar radiation may favor

ozone production all the more than atmospheric conditions are stable, e.g. no wind). Some of

them are known to be related to air pollution, some of them are likely weak or close to noise

when it comes to form the conditional expectation of pollutants given the instruments.

3.1 Instruments and first stage

Unpredicted shock (unsual component). First, for illustrative purpose, we define the unusual

air pollution component by p̂ct = Pct− P̂ct the residual from the linear regression run at the city

c and date t level:

Pct = Xctb+ αd,c + βmy,c + pct

where Pct is a given pollutant concentration, Xct are ground-level variables controls18 and

αd,c, βmy,c are respectively day-of-the-week, and month-year fixed effect which are specific to

the city,19 to capture usual pattern of pollution in our period. pct is the unusual pollution shock.

We proceed the same way for the other variables. By linking the unusual components, this helps

us show how the inverse of PBL height and pollutants’ concentrations are strongly associated,

even after partialling out seasonal mouvements and ground-level weather.

Planetary boundary layer height as an instrument. Figure 2 shows how an increase from

decile to decile of the inverse of PBL height leads to a close to linear increase of 5 out of 6

pollutants’ concentrations, as expected from a vertical dilution effect where pollutant concen-

trations would be inversely proportional to boundary layer height. These figures are built upon

the unusual component of both variables, to emphasize that the link between both variables does

18Precisely: a polynomial of order two for temperature, rainfall and wind strength; linear controls for humidity
and sunshine and 3 dummies encoding the presence of snow, if snow completely covers the ground, if there is ice.

19To abstract from seasonality, city-specific seasonal patterns are relevant as shown in Appendix, Figure 5. Most
urban areas have a maximal PBL height in summer (which also correspond to the lowest air pollution level), but
the two urban areas on the mediterranean coast display the reverse pattern. To focus on the unusual component of
pollution and altitude weather, city-specific month-year effects are important.
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not arise merely from seasonality. Nevertheless, without controls and seasonal fixed effects, the

same patterns can be observed (see Figure 4 in appendix).

Figure 2 clearly shows how all pollutants’ concentrations except O3 are driven upward when

the boundary layer height goes down, conditional on weather controls and city-level temporal

patterns of pollution. As mentioned above, it is not surprising that the dynamics of O3 is

singular, as it is a secondary pollutant which may be consumed by nitrogen oxide in highly

polluted area. For five pollutants out of six, there is a strong and physically grounded effect

of PBL height on ground-level pollutants’ concentrations. This instrument has very attractive

features, but cannot instrument alone the independent effects of distinct pollutants.

Instrument selection. From the very large set of potential instruments, we intent to per-

form an optimal selection in the spirit of (Belloni et al., 2012). Optimal selection should be

understood as unveiling a true predictive power, not as an unprincipled overfitting of the data

at hand. Model selection is performed thanks to the LASSO (Least Absolute Shrinkage and

Selection Operator, (Tibshirani, 1996)). It introduces a penalization to the OLS objective, the

errors’ sum of squares, by adding a scalar penalty multiplied by the l1-norm of the (possibly

high-dimensional) parameter of interest. The solution has a limited number of non-zero coeffi-

cients, whose number depend on the penalty level: as such it performs model selection. In our

setting, the high dimensional parameter is the effect of many altitude weather characteristics on

pollutants’ concentrations, that is the first stage of an IV model explaining the health effects of

air pollutants (the endogenous variables). (Belloni et al., 2012) show how to choose the penalty

to insure asymptotic convergence and inference in a IV-setting where LASSO is used to select

instruments in a first step. In (Belloni et al., 2014), the authors explain how focusing on the

predictive part of the IV problem, namely the first stage, help in deriving inferential results

while building on models whose initial goal was prediction and not structural estimation. In

such a setting, model selection error is not a problem in itself (as long as other valid instruments

are available and selected). For our problem, the method is attractive as complex relationships

between altitude weather variables and air pollution may be recovered from the data. It avoids

an ad-hoc choice of variables and ensure that the selection is reproducible. At the same time, a

strong first stage should improve the precision of our estimates. We complement this approach
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Figure 2: Unusual component of pollutants concentration and unusual component of inverse
boundary layer height.

Note: ”Unusual” refers to the deviation of the variable from a set of weather and seasonal controls. For each
decile of unusual inverse boundary layer height, are represented the mean and the lower and upper quartile of
unusual pollutant concentration.
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with a classical IV.

For each pollutant, which instruments will be selected? In a LASSO model, decreasing the

penalty leads to include gradually more variables, possibly with several variables entering at

the same time. We here present the first selected variables to explain distinct air pollutants,

that is the first LASSO model with one or more variables selected. There is no selection on

ground-level weather variables, that are forced into the model, to respect the conditional ex-

clusion restriction. After selection, we run simple OLS on selected instruments and the same

weather variables controls.20 This is known as post Lasso estimation and alleviates the Lasso

bias which shrinks point estimates toward zero. Results are presented in Table 3: each pollutant

is regressed over the selected variables. From Table 3, we evidence that different instruments

are selected depending on the pollutant in consideration. The exceptions are PM2.5 and PM10:

the first models one obtains after Lasso are very similar for both pollutants (out of the 3 variables

selected first for PM2.5, two are also selected first for PM10).

It suggests distinct relationships between these altitude weather variables and each pollu-

tants, which is a first requirement to be able to disentangle the role of the various pollutants.

Moreover, it is worth noting that the inverse of PBL height is selected within the first most pre-

dictive instruments for most pollutants out of six, although averaged at distinct time of the day,

with the expected sign. Thermal inversions are found particularly predictive for nitrogen oxides

and ozone and are thus also good predictors of ground-level air pollution, in line with existing

literature. For particulate matters, altitude zonal wind coming from the west (resp. from east)

predicts a lower (higher) concentrations, which is coherent with clean oceanic winds from the

west and/or polluted air imported from the eastern regions. Note that Table 3 is not our first

stage regression, which will pool together any selected instruments within the instrument set

(more details are provided below).

In the following, we detail our two related IV strategies. The first builds on a classical IV

with PBL height instrumenting for a pollution index (or a given pollutant) which we refer to as

20Beforehand, seasonal fixed effects are withdrawn from both pollutants and instruments.
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Table 3: Lasso selection of instruments per pollutants and post-lasso estimation

Dependent variable:

Pollutant concentration

PM2.5 PM10 NO2 O3 CO SO2

Today inverse of PBL height
... between 8p.m. and 12p.m. −1,667.248∗∗∗

(126.565)

... between 16p.m. and 20p.m. 1,314.111∗∗∗ 23,070.760∗∗∗

(58.639) (812.958)

... between 8p.m. and 12p.m. in Paris 402.593∗∗∗

(33.031)
Yesterday inverse of PBL height
... between 8p.m. and 12p.m. 974.705∗∗∗

(64.540)

... between 16p.m. and 20p.m. 1,140.015∗∗∗ 1,893.643∗∗∗

(55.117) (61.981)

Thermal inversions
... presence between 8 and 12a.m. −3.410∗∗∗

(0.752)

... strength (day average) −0.106
(0.127)

... strength between 4 and 8a.m. 0.722∗∗∗

(0.063)

... strength between 8 and 12a.m. −0.196
(0.156)

Altitude wind
Zonal (W → E) strength at 97.5 kPa −0.326∗∗∗ −0.365∗∗∗

(0.012) (0.016)

Weather controls Yes Yes Yes Yes Yes Yes

Observations 16,046 14,178 14,824 15,917 14,064 14,775
R2 0.377 0.306 0.508 0.449 0.304 0.053

This table presents post-lasso models by pollutants. Before all regressions, we partial out fixed effects. For each pollutants, a first step of
instruments’ selection is performed with no selection on weather controls. The penalty is chosen so as to obtain the first model with one or
more variables selected. Then, OLS is run per pollutant on the set of selected instruments, which are shown here. Significance: ∗p<0.1;
∗∗p<0.05; ∗∗∗p<0.01
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monopollutant models. It shows the detrimental health effect of air pollution understood as a

whole. The second uses Lasso to optimally select instruments in multipollutant models. The

goal is to disentangle separately the effect of distinct pollutants.

3.2 Monopollutant models

In a first step, we use an IV strategy with a single instrument. Among our set of potential

instruments, the more natural and with a well-identified physical mechanism is the inverse of

boundary layer height. In a first part, we use it as an instrument with the following first stage:

Pct = IBLctη +Xctb+ αd,c + βmy,c + εct (1)

P is either a given pollutant concentration or a pollution index, Xc,t the aforementioned

ground-level weather controls and finally αd,c and βmy,c the seasonal fixed effects (day-of-the-

week × city and month-year × city). In practice, IBLct refers to 2 instruments: the inverse of

boundary layer height at date t and at t − 1. The first stage step is reported in Table 4, which

confirms Figure 2 and the strength of the inverse of PBL height and its lag as instruments.

All pollutants except SO2 respond strongly to PBL height. O3 responds in the opposite way

compared to the other pollutants, probably because of the increases in concentration of nitrogen

oxides.

The second stage writes as follows:

R
(p)
ct = Pctδ +Xctd+ ad,c + emy,c + νct (2)

with R the rate of admissions in emergency per 100 000 inhabitants in city c and date t for a

given pathology p and with the same set of weather controls and seasonal patterns. Importantly,

our exclusion restriction condition is that altitude weather variables influence air pollution at

given ground-level weather, and should not impact health directly. Therefore, we will draw par-

ticular attention to robustness checks in specifying ground-level weather controls. We estimate

this model by two-stage least squares regressions with standard errors are clustered at the city

level.
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Table 4: Inverse of PBL height and pollutant concentrations.

Dependent variable:

Concentration (µg/m−3)

Pollution index PM2.5 PM10 NO2 O3 CO SO2

Instruments
Inverse of PBL Height 218.522∗∗∗ 1,700.531∗∗∗ 1,869.372∗∗∗ 1,434.486∗∗∗ −2,607.193∗∗∗ 28,909.270∗∗∗ 45.989

(24.353) (265.677) (306.226) (236.517) (516.551) (4,698.262) (49.730)

Lag of inverse of PBL H 206.628∗∗∗ 2,365.942∗∗∗ 2,512.861∗∗∗ 468.835∗∗ −1,484.590∗∗∗ 12,382.830∗∗∗ 36.367
(30.039) (266.420) (321.395) (236.677) (309.218) (3,637.090) (43.691)

Observations 21,399 16,046 14,178 14,824 15,917 14,064 14,775
F-statistics 1, 356 993 659 351 12 173 387
R2 0.737 0.614 0.605 0.824 0.821 0.778 0.421

All regressions includes month-year and day-of-the-week fixed effects, interacted with city fixed effects, and weather controls. Standard
errors are clustered at the city level. The F-statistics corresponds to the hypothesis of joint nullity of the two instruments. Significance:
∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

3.3 Multipollutant models and optimal instruments

Pollutant concentrations tends to be very correlated. An additional challenge to tackle is to

measure the separate impact of distinct pollutants on health. To that end, we search for optimal

instruments within our large set of potential candidates, all a priori exogenous conditional on

ground-level weather, because measured in altitude. As for the econometric theory and infer-

ence, this part heavily rely on (Belloni et al., 2012) and (Chernozhukov et al., 2015).

To abstract from seasonality, we first take out the estimated seasonal fixed effects from

any of the variables considered in the following equations: pollution, ground-level and altitude

weather characteristics, emergency admissions. Lower case letters designate residuals from

a linear regressions over month-year×city and day-of-the-week×city fixed effects. Selection

on these effects is not appropriate: we want to maintain the conditional exclusion restriction

and use identifying variations which do not come from mere seasonality. We therefore study

all variables after partialling-out seasonal fixed effects, which boils down to a Frisch-Waugh

transformation. This is the first step of the treatment required for panel data in such a setting

(Belloni et al., 2016), and is similar to the IV-lasso implementation in (Gilchrist and Sands,

2016).
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We consider the following selection equation

pkct = awctη + xctb+ εct (3)

where k indexes pollutants, and awct is a high dimensional set of instruments built from the

altitude weather variables;21 and η is a high dimensional vector to be estimated.

We formulate the assumption that η is in fact at least approximately sparse, i.e. that only a

”small” number of dimensions of this vector is non negligible. That is, only some of the intro-

duced instruments variables do have a non negligible impact on pollutants’ concentration. With

this assumption, we can avoid hand-picking instruments and run a first stage Lasso regression

whose output are the non zero coefficients, one for each pollutant. In this step, there is no selec-

tion on ground-level weather controls, there are unpenalized: in the end, none of the dimension

of b are at zero. Again, this is done to maintain the exclusion restrictions, for reasons similar to

these applying to seasonal fixed effects.22

With the pooled selected instruments (one set of instruments has been selected for each

pollutant), we compute a two stage least squares with multiple pollutants, taking into account

our additional controls (again the same ground-level weather controls, remember that seasonal

FE have been partialled out). In this post-lasso IV, the first stage writes as follows

pkct = awsctµ+ xctc+ uct (4)

where aws are altitude weather variables selected by lasso in a first step among aw. The second

stage is as follows

ract =
5∑

k=1

p̂ctδk + xctβ + νct (5)

21For inverse PBL height, its lag, and thermal inversion presence, we build many possible functions of the data
at the city-date (c, t) level: averages over 24hours; averages over day hours (when pollution is mostly emitted);
over 6 time windows of 4 hours and specific to the city (allowing for various predictive patterns per city). We
add thermal inversions strength averaged at 6 moments of the day; evaporation; terrestrial heat latent flux; and in
14 altitude layers, humidity, zonal wind, meridian wind, wind strength. The full set of instruments comprise 322
variables: 76 related to thermal inversions, 66 related to inverse PBL height and 66 to its lag, 85 related to winds.

22However, seasonal fixed effects are somewhat too numerous to be forced into the model in the same way.
Theoretical properties after selection from a high dimensional set of instruments, conditional on covariates, assume
the later to be low dimensional.
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where each p̂kct is derived from the post-lasso first stage linear regression, and r and x are

emergencies admissions (or mortality rate) and ground-level weather controls.

We employ lasso selection relying on the hdm package (Chernozhukov et al., 2016). The

penalty parameter in chosen rigorously in the sense of (Belloni et al., 2012) (“rigorous lasso”),

to allow for principled inference. After lasso selection, we run a two-stage least squares on the

pooled set of instruments. All our regressions standard errors are clustered at the city level.

4 Results

4.1 Causal impact of air pollution

We first consider air pollution as a whole. In this section, the inverse of planet boundary layer

is used to instrument an aggregate pollution index as well as pollutants taken separately.23 We

present reduced form results, causal estimates and finally explore delayed effects over a few

days.

We start by showing reduced-form estimates in Table 5, relating emergencies admissions

and mortality rate to inverse of the PBL height. Panel (C) corresponds to our baseline first

stage, with both inverse PBL height and its lag as instruments. Panel (A) and (B) show the

results when considering one or the other instrument. Conditional on weather and seasonal pat-

terns, a lower boundary layer involves significantly more emergency admissions for respiratory

diseases and a higher mortality rate on the following day. The timing is rather different for

cardiovascular diseases: the contemporary PBL height affects the emergency admissions more

than its lag. This table suggests that the health reaction to air pollution might be different be-

tween respiratory and cardiovascular diseases. As a falsification test, we add digestive diseases

which are the other most common admissions in emergency. As expected, we find no effects of

the inverse of boundary layer on these pathologies.

23For now, we let ozone aside. To study O3, we will need to control at least for the other pollutants involved
in equilibrium with O3, that are anti-correlated. O3 is nevertheless considered when computing pollution indexes
that aggregates all pollutants of our sample. We come back to O3 in the next section.
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Table 5: Inverse of planetary boundary layer height, emergency admissions and mortality rate

Dependent variable, per 100 000 inhabitants:
Emergency admissions Mortality rate

Respiratory diseases Cardiovascular diseases Digestives diseases

One instrument (A) (1) (2) (3) (4)

Lag of inverse of PBL Height 16.984∗∗∗ 1.980 −7.419 15.673∗∗∗

(5.372) (3.221) (7.775) (5.975)

Observations 21,459 21,459 21,459 21,459

One instrument (B) (1) (2) (3) (4)

Inverse of PBL Height 5.686 7.743∗∗ 1.931 12.841∗∗

(5.806) (3.766) (7.181) (5.057)

Observations 21,468 21,468 21,468 21,468

Two instruments (C) (1) (2) (3) (4)

Inverse of PBL Height −2.010 7.658 6.107 6.704
(6.259) (5.337) (6.773) (6.361)

Lag of inverse of PBL Height 17.720∗∗∗ −0.825 −9.656 13.218∗

(5.616) (4.699) (7.752) (7.147)

Observations 21,459 21,459 21,459 21,459

All regressions includes month-year and day-of-the-week fixed effects, interacted with city fixed effects; and weather controls. Standard
errors are clustered at the city level. Significance: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 6 presents the IV results for respiratory emergency admissions, derived from Equa-

tions 1 and 2. Each coefficient is from a separate regression, the dependent variable being either

emergency admissions for respiratory, cardiovascular, digestive diseases or the mortality rate.

In our baseline specification in column (1), we instrument the pollution index. Although for

now, we do not want to attribute these health effects to a particular pollutant, we provide the

results when considering separately distinct pollutants instead in columns (2-6). The later esti-

mates may be compared to the existing literature, which as here do not control for the presence

of other pollutants. An increase by half a standard deviation of the air pollution index (0.65,

which corresponds to the average difference in levels of this air pollution index between a Sun-

day and a Wednesday) leads to emergency admissions for respiratory diseases higher by 0.03

admissions per 100 000 inhabitants, that is an increase by about 2%. Similarly, the admissions

for cardiovascular diseases are higher by 0.6% and mortality rate by 1.5 %. Again, we perform a

falsification test of the effect of air pollution on digestive diseases which is as expected insignif-

icant. For each specific pollutant, concentrations are expressed in µg/m−3. Quantitatively, +

10 µg/m−3 in PM2.5 (about a standard deviation) leads to + 3% more respiratory admissions,

+ 2% more admissions for cardiovascular diseases and a mortality rate higher by +3%.24 For

CO, + 200 µg/m−3 (about a standard deviation) leads to +4% more respiratory admissions and

+4% of the mortality rate. However, with this strategy, we cannot rule out that a single pollutant

drives all the results. We come back to this issue in the next section.

Finally, we conduct a battery of robustness checks. In the second and third columns of Ta-

ble 7, we show the point estimates when using alternative instruments either following (Jans

et al., 2018), using their definition of thermal inversions, or considering PBL height and its lag

averaged at 6 moments of the day (12 instruments) instead of our baseline with PBL height and

its lag averaged over the full day (2 instruments). The results are very close, although of higher

magnitude in column (2). Then, we test carefully the sensitivity of the results to the specifi-

cation of weather controls. The following columns (4-6) address this concern: we modify the

degrees of polynomials or withdraw the weather variables (temperature, rainfall, wind strength,
24We may compare the later estimate to that from (Schwartz et al., 2016), which find, for Boston over 2000-

2009, that for an increase by about 6µg/m−3 of PM2.5 leads to an increase by 0.9% of daily deaths. Our estimate
is of similar magnitude, although slightly higher.
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Table 6: Causal effect of air pollution on health. Monopollutant IV models.

Instrumented variable:

(1) (2) (3) (4) (5) (6)
Pollutant index PM2.5 PM10 CO NO2 SO2

Dependent variable:

Respiratory diseases 0.041∗∗∗ 0.005∗∗∗ 0.005∗∗∗ 0.0003∗∗ 0.007∗ 0.306
[1.53] (0.015) (0.002) (0.002) (0.0001) (0.004) (0.241)

Cardiovascular diseases 0.014∗∗ 0.003∗∗ 0.001 0.0003 0.006∗∗ 0.143
[1.59] (0.006) (0.001) (0.001) (0.0002) (0.002) (0.131)

Mortality rate 0.050∗∗∗ 0.006∗∗∗ 0.005∗∗∗ 0.0004∗∗∗ 0.014∗∗∗ 0.244
[2.10] (0.016) (0.002) (0.002) (0.0001) (0.004) (0.245)

Digestive diseases −0.009 −0.003 −0.002 0.00001 −0.004 −0.106
[2.81] (0.023) (0.003) (0.002) (0.0002) (0.005) (0.184)

Observations 21,399 16,046 14,178 14,064 14,824 14,775
Concentration (µg/m−3) [16.5] [25.8] [407.7] [37.4] [1.00]

Each coefficient is from a separate regression. Regressions with the same endogenous variables share the
same number of observations. Instruments are inverse PBL height and its lag. All regressions includes month-
year and day-of-the-week fixed effects, interacted with city fixed effects. All pollutant concentrations are in
µg/m−3. The average level of the dependent variables and of the pollutants’ concentrations are given within
brackets. Standard errors are clustered at the city level. Significance: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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humidity and sunlight). Neither the point estimate nor the significance are altered. Finally, we

consider different specifications for fixed effects. Our baseline set of fixed effects is rather re-

strictive and capture already a large amount of seasonal variations (in particular seasonal trend

at the month-year level, specific to each cities). Column (8) consider a loose set of temporal

fixed effects, not specific to the city, but taking into account aggregate shocks at the day, season

(3-month periods) and year level. Respiratory diseases are somewhat less significant p-value of

0.051 instead of 0.006 in our baseline), but the results remain very similar for cardiovascular

diseases and mortality. If we consider that monthly seasonal patterns are the same from one year

to the next, as in column (10), the resultats are very similar. However, taking the specification

further and introducing week× city fixed effects alter the significance of our results (column 11)

for respiratory diseases. All in all, our baseline set of fixed effects seems a reasonable choice.

The most robust result which almost never changes across any robustness tests is relative to the

mortality rate.

In this first part, our results clearly evidence a detrimental short-term effect of air pollu-

tion on respiratory health. However, we cannot properly distinguish which pollutant has the

strongest effect and even whether all pollutants do have an impact on health or rather that the

effect is borne by a few ones, which covary with all others.
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4.2 Disentangling the impact of distinct pollutants

In Table 8 and 9 we present our main set of results, derived from Equations 4 and 5. We start

with monopollutant models where instruments are selected with a Lasso step, as described in

section 3.3, so we can compare how applying this new method modify the results obtained

before in a classical IV framework. The first column presents the results of six separate re-

gressions, each with one pollutant, and the other column presents the results when successively

adding more pollutants. The final and complete specification comprise five distinct pollutants.

We can therefore consider these results as giving the separate impact of pollutants, once con-

trolled for the other main pollutants.25 Although we mostly comment the specification with 5

pollutants, we note that the sample decreases in size each time that we add a pollutant (for an

observation to enter the regression, all the considered pollutants should be observed in a given

urban area at a given date, a condition which significantly alters the sample size). That is why

we should not disregard the results with fewer pollutants, which are based on more observations.

For respiratory diseases (Table 8), we find compelling evidence of the detrimental and

pollutant-specific effect of three pollutants: ozone (O3), sulfur dioxide (SO2) and carbon monox-

ide (CO). These three pollutants affect significantly emergency admissions in the three pollu-

tants model (column 5 of Table 8) and in a 5 pollutants models (last column of Table 8). The

impact of carbon monoxide might however been still confounded with the impact of PM10:

comparing the last two columns of Table 8, introducing PM10 instead of PM2.5 alter the sig-

nificance of CO, to the benefit of PM10. The most robust findings is the detrimental effect of

ozone O3 and sulfur dioxide. O3 is found to have an independent effect from other pollutants,

which is stable when we successively add more pollutants to the equation: a standard deviation

of O3 (24µg/m−3) causes between 5 (6th column) to 12 % (1rst column) more emergency ad-

missions for respiratory diseases. A standard deviation of SO2 (1.5µg/m−3) causes between 5

(last column) to 9 % (1rst column) more emergency admissions for respiratory diseases.

25We never consider both types of particulate matters together as we did not suceed in disentangling their
separate effects, even in regressions with only these two pollutants.
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Table 9: Air pollutants and health. Cardiovascular diseases and Mortality rate. Post-lasso
selection IVs.

Dependent variable, per 100 000 inhabitants:
Mortality rate Emergency admissions for cardiovascular diseases

N pollutants 1 2 3 5 1 2 3 5

PM2.5 0.004∗∗∗ 0.004∗∗∗ 0.005∗∗ 0.004∗∗ 0.0002 −0.002 0.0004
(0.001) (0.002) (0.002) (0.002) (0.001) (0.001) (0.002)

[16,046] [16,046]
PM10 0.004∗∗∗ −0.0001

(0.001) (0.001)
[14,178] [14,178]

CO 0.0002∗ 0.00002 −0.0001 0.0002∗ 0.0003∗∗ 0.0004∗∗ 0.0004∗∗

(0.0001) (0.0002) (0.0005) (0.0001) (0.0001) (0.0002) (0.0002)
[14,064] [14,064]

O3 −0.002 −0.003 −0.001 0.0004
(0.001) (0.003) (0.001) (0.003)

[15,917] [15,917]
SO2 0.04∗ 0.027 −0.006 −0.006

(0.023) (0.030) (0.016) (0.023)
[14,775] [14,775]

NO2 0.006∗∗∗ 0.004 0.003 0.001 0.002 −0.0001 −0.0002 −0.002
(0.002) (0.002) (0.003) (0.004) (0.001) (0.002) (0.002) (0.002)

[14,824] [14,824]

Observations [in bracket] 11,714 8,322 6,111 [in bracket] 10,566 8,322 6,111

In column labeled 1, each coefficient corresponds to a separate regression with one pollutant. Other columns correspond to a
multipollutants regression. Before all regressions, we partial out fixed effects. All variables are first regressed on month-year and
day-of-the-week fixed effects both interacted with city fixed effects and then replaced by the corresponding residuals. A first step of
per-pollutant lasso selection is performed, conditional on weather variables which are forced into the model (no selection), selected
instruments are then pooled and enter a regular IV estimations. The sample reduce in size when increasing the number of pollutant
due to missing values. Standard errors are clustered at the city level. Significance: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

For mortality rate and cardiovascular diseases, we find strong evidence of the nega-

tive effect of respectively particulate matters PM2.5 and carbon monoxide CO, eitheir in a

monopollutant model or in the 5 pollutants models (Table 9). Quantitatively, a standard devi-

ation of PM2.5 (11µg/m−3) causes an increase between 2 and 4 % of the mortality rate. A

standard deviation of CO (216µg/m−3) causes between 3 to 6 % more emergency admissions

for cardiovascular diseases.26

(Preliminary) We conduct two types of heterogeneity analysis: along the age ladder and

by subgroups of diseases. In the following, we focus for respiratory diseases on models with

26For digestive diseases, we perform similar falsification test which are available in Appendix, Table 14, and
find no effects.
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ozone, sulfur dioxide and carbon monoxide and for cardiovascular diseases and mortality rate

on monopollutant models, a choice which preserves the sample size. We first explore the effects

along the age ladder in Table 10, where both hands of the age distribution stand out in particular

the youngest. Note that admissions are much more frequent as well at both extremes. A level of

ozone higher by one standard deviation (24µg/m−3) leads to 12 more emergency admissions

per 100 000 newborns27 for respiratory diseases, about 2.6 more emergency admissions per 100

000 infants,28 and 0.9 more emergency admissions per 100 000 children aged less than 4.

(Preliminary) Second, we derive results by group of diseases in Table 11: acute upper

respiratory system diseases (e.g. pharyngitis), influenza, bronchitis and chronic diseases (e.g.

asthma, or COPD, Chronic obstructive pulmonary disease) and abnormalities of breathing.

(Preliminary) Finally, we explore delayed effects. Throughout the whole analysis, we have

assumed that the impact of air pollution on short-term health indicators was exclusively con-

temporaneous. In this last part, we check whether we find lagged effects when introducing

leads and lags in the IV, with both contemporaneous and lagged instruments. Table 15 in Ap-

pendix shows that it is probably not the case. When introducing two lags in the baseline models

(columns (1)), the effect still appear as contemporaneous. When introducing a lead on top of

two lags (columns (2)), results are somewhat less significant. For most of our results, these

regressions suggest that the (short-term) effect is mostly contemporaneous. However, it is not

as clearcut for ozone on respiratory diseases, as when introducing nitrogen oxides (which is in

equilibrium with ozone), ozone appears with a two-days lagged effects on emergency admis-

sions for respiratory diseases, but not in all regressions.

27Aged less than 28 days.
28Aged from 29 days to one year.
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Table 10: Air pollutants and health: sensitivity along the age ladder. Post-lasso selection
IVs.

Emergency admissions for respiratory diseases per 100 000 inhabitants (of the age group)

(newborns) (Infant) (≤ 4) (5-14) (15-59) (60-64) (65-69) (70-74) (75-79) (≥ 80)

O3 0.510∗∗ 0.112∗∗∗ 0.037∗∗∗ 0.002 0.0002 0.006 −0.002 −0.004 −0.002 0.025∗

(0.232) (0.034) (0.010) (0.002) (0.001) (0.005) (0.002) (0.013) (0.012) (0.014)

CO 0.053∗∗∗ 0.005 0.003∗∗∗ −0.00003 −0.00005 0.001 0.0002 −0.001 −0.0001 0.003
(0.013) (0.004) (0.001) (0.0002) (0.0001) (0.001) (0.0005) (0.001) (0.002) (0.002)

SO2 −0.846 2.085∗∗∗ 0.265∗∗ 0.020 0.011 −0.002 −0.082 −0.066 −0.018 0.281∗

(2.682) (0.483) (0.133) (0.030) (0.011) (0.069) (0.074) (0.116) (0.187) (0.146)

Mean dep. var. 21.78 14.49 5.46 0.50 0.49 1.16 1.43 2.26 3.45 7.23
Observations 8,902 8,902 8,902 8,902 8,902 8,902 8,902 8,902 8,902 8,902

Emergency admissions for cardiovascular diseases per 100 000 inhabitants (of the age group)

(newborns) (Infant) (≤ 4) (5-14) (15-59) (60-64) (65-69) (70-74) (75-79) (≥ 80)

CO 0.003 −0.0002 −0.00004 0.00000 0.00005 0.0002 −0.001 0.001 0.0003 0.003∗

(0.002) (0.0002) (0.0001) (0.00004) (0.0001) (0.0003) (0.0004) (0.001) (0.001) (0.001)

Observations 14,064 14,064 14,064 14,064 14,064 14,064 14,064 14,064 14,064 14,064

Mortality rate

(≤ 4) (4 ≤ . < 65) (65− 74) (≥ 75)

PM2.5 −0.0004 0.001∗∗ 0.014∗∗∗ 0.034∗∗∗

(0.001) (0.0004) (0.004) (0.011)

Observations 16,046 16,046 16,046 16,046

Before all regressions, we partial out fixed effects. All variables are first regressed on month-year and
day-of-the-week fixed effects both interacted with city fixed effects and then replaced by the corresponding
residuals. A first step of per-pollutant lasso selection is performed, conditional on weather variables which
are forced into the model (no selection), selected instruments are then pooled and enter a regular IV estima-
tions. The sample reduces in size when increasing the number of pollutant due to missing values. Standard
errors are clustered at the city level. Significance: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 11: Air pollutants and respiratory pathologies. Post-lasso selection IVs

Dependent variable:
Emergency admissions for respiratory diseases,

by pathology (ICD-10 code)
Acute, upper resp. Influenza Bronchio. Chronic Abnormalities

of Breathing

(J00-J06) (J09-J18) (J20-J22) (J40-J99) (R06)

O3 −0.0001 0.0005 0.004∗∗∗ 0.001∗ 0.0003∗∗

(0.0004) (0.001) (0.001) (0.001) (0.0002)

CO 0.0001∗ 0.00003 0.0003∗∗∗ 0.0001 0.00001
(0.00003) (0.0001) (0.0001) (0.0001) (0.00002)

SO2 −0.001 0.021∗∗ 0.023∗∗ 0.012 0.003
(0.005) (0.010) (0.011) (0.019) (0.004)

Mean dep. var. 0.079 0.435 0.861 0.635 0.055
Observations 8,902 8,902 8,902 8,902 8,902

Before all regressions, we partial out fixed effects. All variables are first regressed on month-
year and day-of-the-week fixed effects both interacted with city fixed effects and then replaced
by the corresponding residuals. A first step of per-pollutant lasso selection is performed, con-
ditional on weather variables which are forced into the model (no selection), selected instru-
ments are then pooled and enter a regular IV estimations. Standard errors are clustered at the
city level. Significance: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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5 Conclusion

This paper has shown how distinct pollutants have strong and independent effects on short-term

respiratory health of urban population. We develop a twin strategy, showing first how air pol-

lution is causally linked to daily emergency admissions and mortality rates and second how

optimally selecting many more instruments allowed to disentangle the effects of several pollu-

tants. To our knowledge, we are the first to provide causal evidence on the separate effects of

ozone, carbon monoxide and sulfur dioxide on respiratory diseases, jointly and independently,

in the real urban environment, and controlling for the other pollutants. Moreover, we find a

significant impact of carbon monoxide on cardiovascular diseases as well as of particulate mat-

ters on the mortality rate, while controlling for the other pollutants in presence. In addition,

we show how high dimensional data from a general climate model can be leveraged to provide

a large set of instruments which prove very insightful for clean evidence of ambient pollution

levels on health. Our estimates could be considered for the production of a short-term pollution

index reflecting the joint and independent impact of several pollutants.

Our results point out to large effects of relatively small amounts to ozone, sulfur dioxide,

carbon monoxide and particulate matters, borne in priority by children and elderly. While

European norms have improved air quality as e.g. carbon monoxide is concerned, ozone con-

centrations are not at all decreasing in modern European cities.

33



References

Anderson, 2015. Anderson, M. L. (2015). As the wind blows: The effects of long-term expo-

sure to air pollution on mortality.

Arceo et al., 2016. Arceo, E., Hanna, R., and Oliva, P. (2016). Does the effect of pollution on

infant mortality differ between developing and developed countries? evidence from mexico

city. The Economic Journal, 126(591):257–280.

Belloni et al., 2012. Belloni, A., Chen, D., Chernozhukov, V., and Hansen, C. (2012). Sparse

models and methods for optimal instruments with an application to eminent domain. Econo-

metrica, 80(6):2369–2429.

Belloni et al., 2014. Belloni, A., Chernozhukov, V., and Hansen, C. (2014). High-dimensional

methods and inference on structural and treatment effects. Journal of Economic Perspectives,

28(2):29–50.

Belloni et al., 2016. Belloni, A., Chernozhukov, V., Hansen, C., and Kozbur, D. (2016). Infer-

ence in high-dimensional panel models with an application to gun control. Journal of Business

& Economic Statistics, 34(4):590–605.

Chay and Greenstone, 2003. Chay, K. Y. and Greenstone, M. (2003). The impact of air pollu-

tion on infant mortality: evidence from geographic variation in pollution shocks induced by a

recession. The quarterly journal of economics, 118(3):1121–1167.

Chen et al., 2018. Chen, S., Oliva, P., and Zhang, P. (2018). Air pollution and mental health:

Evidence from china. Technical report, National Bureau of Economic Research.

Chernozhukov et al., 2015. Chernozhukov, V., Hansen, C., and Spindler, M. (2015). Post-

selection and post-regularization inference in linear models with many controls and instru-

ments. American Economic Review, 105(5):486–90.

Chernozhukov et al., 2016. Chernozhukov, V., Hansen, C., and Spindler, M. (2016). hdm:

High-dimensional metrics. arXiv preprint arXiv:1608.00354.

34



Currie et al., 2011. Currie, J., Heep, S., and Neidell, M. (2011). Quasi-experimental ap-

proaches to evaluating the impact of air pollution on childrens health. Health affairs (Project

Hope), 30(12):2391.

Currie and Neidell, 2005. Currie, J. and Neidell, M. (2005). Air pollution and infant health:

what can we learn from california’s recent experience? The Quarterly Journal of Economics,

120(3):1003–1030.

Deryugina et al., 2016. Deryugina, T., Heutel, G., Miller, N. H., Molitor, D., and Reif, J.

(2016). The mortality and medical costs of air pollution: Evidence from changes in wind

direction. Technical report, National Bureau of Economic Research.
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6 Additional Figures
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Figure 3: Annual mean of particulate matters in cities in urban areas reporting data to WHO.
Dotted line represents WHO guidelines. Source: WHO Ambient (outdoor) air pollution database 2016,
measurements in 2014, Census 2013
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correlation).
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7 Additional Tables

Table 12: Monopollutant models with Lasso instruments selection.

Emergency admissions for respiratory
diseases per 100 000 inhabitants

Instruments (a’,b’,c,d) (a,b,c,d) (a”,b”,c,d)
N instrumental variables 330 150 1, 170

PM2.5 0.002∗ 0.001 0.001
(0.001) (0.001) (0.001)

[30] [25] [39]

PM10 0.003∗∗∗ 0.002∗∗∗ 0.002∗∗

(0.001) (0.001) (0.001)
[35] [21] [35]

CO 0.0002∗ 0.0003 0.0003
(0.0001) (0.0002) (0.0002)

[24] [10] [18]

O3 0.002∗∗ 0.005∗∗∗ 0.005∗∗∗

(0.001) (0.001) (0.001)
[38] [20] [41]

SO2 0.062∗∗∗ 0.115∗∗∗ 0.100∗∗∗

(0.006) (0.041) (0.031)
[14] [5] [8]

NO2 0.004∗∗ 0.004∗∗ 0.004∗∗

(0.002) (0.002) (0.002)
[31] [16] [25]

Note: Each coefficient is derived from a separate IV regression
on a subset of selected instruments. Standard errors are clustered
at the city level. The set of available instruments comprises (a)
thermal inversions, (a’) thermal inversions interacted with city,
(a”) thermal inversions interacted with (humidity, pressure, TKE,
wind strength), (b) PBL heights, (b’) PBL heights interacted with
the city, (b”) PBL heights interacted with (humidity, pressure,
TKE, wind strength), (c) zonal (W-E) and meridional(N-S) winds
in several layers, (d) other variables: altitude humidity, evapora-
tion, latent heat flux (continental) .
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Table 13: From OLS to IV
Emergency admissions for respiratory diseases Mortality

(OLS) (OLS) (IV) (IV) (IV) (OLS) (OLS) (IV) (IV) (IV)

Pollution index 0.195∗∗∗ −0.003 0.041∗∗∗ 0.030∗ 0.037∗∗ 0.095∗∗ 0.012∗∗ 0.050∗∗∗ 0.028∗ 0.036∗∗∗

(0.028) (0.008) (0.015) (0.017) (0.014) (0.041) (0.005) (0.016) (0.014) (0.014)

Instruments . . (1) (2) (3) . . (1) (2) (3)
Day x City No Yes Yes Yes Yes No Yes Yes Yes Yes
Month-year x City No Yes Yes Yes Yes No Yes Yes Yes Yes
Weather controls No Yes Yes Yes Yes No Yes Yes Yes Yes
Observations 21,841 21,400 21,399 21,400 21,399 21,841 21,400 21,399 21,400 21,399

Note: Pollution index is derived from a PCA analysis (the first component). Instruments (1) are average inverse of PBL height and its lag; (2) are average
inverse of PBL height at 6 moments of the day; (3) are average inverse of PBL height at 6 moments of the day and their lag.Standard errors are clustered at
the city level. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 14: Falsification test: air pollution and digestive diseases.

Dependent variable:
Emergency admissions for digestive diseases per 100 000 inhabitants

(1) (2) (3) (4) (5) (6)

PM2.5 −0.002
(0.001)

PM10 −0.001
(0.001)

CO −0.00004
(0.0001)

O3 −0.001
(0.001)

SO2 −0.012
(0.013)

NO2 −0.002
(0.002)

Observations 16,046 14,178 14,064 15,917 14,775 14,824

Before all regressions, we partial out fixed effects. All variables are first regressed on month-
year and day-of-the-week fixed effects both interacted with city fixed effects and then re-
placed by the corresponding residuals. A first step of per-pollutant lasso selection is per-
formed, conditional on weather variables which are forced into the model (no selection),
selected instruments are then pooled and enter a regular IV estimations. The sample re-
duce in size when increasing the number of pollutant due to missing values. Significance:
∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 15: Lagged effects. Post-lasso selection IVs.

Respiratory diseases Cardiovascular diseases Mortality rate

(1) (2) (3) (4) (1) (2) (1) (2)

O3 (t+1) 0.006∗ 0.006 CO (t-1) −0.00004
(0.003) (0.004) (0.0001)

O3 (t) 0.007∗∗∗ 0.001 0.006∗∗ 0.002 CO (t) 0.0003∗∗ 0.0003
(0.002) (0.005) (0.002) (0.004) (0.0001) (0.0002)

O3 (t-1) −0.001 −0.001 0.0001 −0.002 CO (t-1) 0.00003 0.0001
(0.002) (0.003) (0.002) (0.002) (0.0001) (0.0001)

O3 (t-2) 0.001 0.002 0.002 0.003∗∗∗ CO (t-2) 0.00001 −0.00001
(0.001) (0.002) (0.002) (0.001) (0.00004) (0.00004)

CO (t+1) 0.0002 −0.0002 PM2.5 (t+1) −0.0002
(0.0004) (0.001) (0.002)

CO (t) 0.001∗∗∗ 0.001∗∗ 0.001∗∗∗ 0.001∗∗∗ PM2.5 (t) 0.004∗∗ 0.004
(0.0002) (0.0003) (0.0002) (0.0003) (0.002) (0.003)

CO (t-1) −0.0001 −0.0002 0.00001 −0.0002 PM2.5 (t-1) 0.0004 0.001
(0.0002) (0.0002) (0.0003) (0.0003) (0.002) (0.003)

CO (t-2) 0.00001 0.0001 0.0004∗ 0.0003 PM2.5 (t-2) 0.001 0.0004
(0.0002) (0.0002) (0.0002) (0.0003) (0.001) (0.001)

SO2 (t+1) 0.006 0.037
(0.027) (0.037)

SO2 (t) 0.041∗ 0.032 0.023 0.010
(0.023) (0.033) (0.023) (0.030)

SO2 (t-1) −0.012 −0.006 0.039 0.016
(0.033) (0.042) (0.041) (0.044)

SO2 (t-2) −0.021 −0.021 0.002 −0.003
(0.022) (0.029) (0.017) (0.025)

NO2 (t+1) 0.004
(0.005)

NO2 (t) −0.00004 −0.0002
(0.004) (0.004)

NO2 (t-1) −0.001 −0.001
(0.003) (0.002)

NO2 (t-2) −0.003 −0.0002
(0.002) (0.002)

Observations 5,255 4,418 4,069 3,236 11,468 10,659 12,162 10,768

Before all regressions, we partial out fixed effects. All variables are first regressed on month-year and day-of-the-week fixed effects both
interacted with city fixed effects and then replaced by the corresponding residuals. Compared to the contemporaneous IV equation, the set
of instruments is the same, but is inflated with all instruments’ lags (one to five periods), before selection. A first step of per-pollutant lasso
selection is performed, conditional on weather variables which are forced into the model (no selection), selected instruments are then pooled
and enter a regular IV estimations. Standard errors are clustered at the city-level. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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