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Abstract

Given a profile of preferences on a set of alternatives, a majority
relation is a complete binary relation that aggrees with the strict pref-
erence of a strict majority of these preferences whenever such strict
strict majority is observed. We show that a majority binary relation
is, among all conceivable binary relations, the most representative of
the profile of preferences from which it emanates. We define "the most
representative" to mean "the closest in the aggregate". This requires a
definition of what it means for a pair of preferences to be closer to each
other then another. We assume that this definition takes the form of
a distance function defined over the set of all conceivable preferences.
We identify a necessary and sufficient condition for such a distance
to be minimized by the preference of the majority. This condition re-
quires the distance to be additive with respect to a plausible notion
of compromise between preferences. The well-known Kemeny distance
between preference does satisfy this property. We also provide a char-
acterization of these class of distances as numerical representation of
a primitive qualitative proximity relation between preferences.

JEL classification: D71, D72
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1 Introduction

The "preference of the majority" is indisputably one of the most widely
used and discussed social preference. Yet, the normative justifications in
favour of the "majoritarian" way of aggregating individual preferences are
surprisingly thin. An important such justification has been provided by May
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(1952), who proves that when there are only two alternatives, the majority
rule is the only mapping of individual preferences into social ranking that
is decisive, egalitarian, neutral and positively responsive. A well-known lim-
itation of the majority rule, at least since Condorcet in the late XVIIIth
century, is its failure to satisfy transitivity. This limitation is obviously not
addressed by May (1952) who considers only the case where two alterna-
tives are concerned. In the discussion of his famous impossibility theorem,
Arrow (1963) himself (see e.g. p. 101), recognizes that the generalization to
more than two alternatives of May’s results was not easy. Papers who have
done so include Dasgupta and Maskin (2008) and the recent work by Horan,
Osborne, and Sanver (2018).

In this paper, we propose an alternative justification for the Majority
rule than that developed in the May (1952) tradition. Specifically, we show
that the preference of the majority qualifies, in a somewhat strong sense, as
being representative of the collection of preferences from which it emanates.
The notion of representativeness on which our argument is constructed is
that underlying the choices of several measures of "central tendency" in
classical statistics. A common justification indeed for the mean of a set of
numbers as a "representative statics" for these numbers is that the mean
minimizes the sum of the squares of the differences itself and the represented
numbers. Similarly, the median of a set of numbers - another widely used
measure of "central tendency" - is commonly justified by the fact that it
minimizes the sum of the absolute values of those same difference, while the
mode minimizes a somewhat more degenerate distances between numbers
that is 1 if the numbers differ and 0 if they don’t. Similarly, it is common
in regression analysis to fit a cloud of points indicating values taken by
a dependant variable and a collection of "independent" ones by a specific
function whose parameters are "estimated" by minimizing the sum of the
(square of) the discrepancies between the predicted and observed values of
the dependant variables. The parametric curve estimated in this fashion is
commonly portrayed as "representative" of the cloud of points

In this paper, we show that the "preference of the majority" represents
in a similar fashion the individual preferences in the sense that it minimizes
the sum of distances between itself and the preferences for some distance
function that represents an underlying notion of preference dissimilarity.
What such a notion can be is, of course, far from clear. Because of this, we
take the prudent view of not specifying too much the notion of preference
dissimilarity. We actually identify the properties of the family of preference
dissimilarity notions that are necessary and sufficient for the distance that
numerically represent them to be minimized by a majoritarian preference.
This family is that of all distances that are additive with respect to any two of
three preferences that are connected by a notion of preference "compromise"
The notion of compromise considered is that underlying the Pareto principle.
That is to say, a compromise between two preferences is any preference that
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agrees with the unanimity of the two preferences when this unanimity is
observed.

Our analysis can be seen as a generalization of a small literature in
social choice that has discussed the representativeness of the majoritarian
preference in the sense of distance minimization with respect to the specific
Kemeny notion of proximity (see e.g. Kemeny (1959) and Kemeny and Snell
(1962)). It has been known indeed for quite a while that, when transitive, the
majority relation maximizes the sum of pairwise agreements between itself
and the individual preferences (see e.g. Monjardet (2005)). In other words,
when the majority relation of a vote profile is transitive, it is the unique Ke-
meny distance-minimizing social welfare relation (Demange (2012)). This
literature has also established that the majority rule can then be seen as the
‘median’ preference in a metric space over preferences in which the metric is
the Kemeny distance. For example, Young and Levenglick (1978) have char-
acterized in this fashion all Condorcet consistent rules. Other contributions
to this literature include Lerer and Nitzan (1985) and Andjiga, Mekuko,
and Moyouwou (2014). There are also some work like Bossert and Storcken
(1992) and Nehring and Puppe (2007) that studies the existence of ‘suit-
able’ strategy-proof social welfare functions in such median spaces. In this
paper, we therefore extend the results about the "representativeness" of the
majority by showing that it holds for a larger class of notions of proximity
than that of Kemeny that we precisely identify, through the property of
between-additivity. We also shows that the representativeness of majoritar-
ian preferences holds also in the (very frequent) case where those majoritar-
ian preferences are not transitive.

The plan of the remaining of the paper is as follows. In the next section,
we introduce the notation and the model. Section 2 states and prove the
results and section 3 concludes

2 The Model

2.1 Notation

We are interested in problems involving variable collections of preferences
over a finite set X of at least 3 alternatives. Since preferences are described
as binary relations, we first introduce our notation pertaining to those. By
a binary relation R on X, we mean a subset of X2. Given a binary re-
lation R on X, we define its symmetric factor RS by (x, y) ∈ RS ⇐⇒
{(x, y), (y, x)} ⊂ R and its asymmetric factor RA by (x, y) ∈ RA ⇐⇒
[(x, y) ∈ R and (y, x) /∈ R]. A binary relation R is asymmetric when it
coincides with its asymmetric factor. A binary relation R on X is:

(i) reflexive if (x, x) ∈ R for every x ∈ X.
(ii) linear if for no distinct x and y does the statement (x, y) ∈ RS hold.
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(iii) transitive if, for any x, y and z ∈ X, (x, z) ∈ R always follows
(x, y) ∈ R and (y, z) ∈ R

(iv) complete if {(x, y), (y, x)} ∩R �= ∅ for every distinct x, y ∈ X.
A reflexive and transitive binary relation is called an quasi-ordering, and

a complete quasi-ordering is called an ordering. We denote respectively by
C and R the set of all complete binary relations and orderings on X. For
any ordering R, we denote by X/R the quotient of X over R defined by:
X/R = {A ⊂ X : {(a, a′), (a′, a)} ⊂ R for any a and a′ ∈ A}. Hence the set
X/R is the set of all classes of elements of X whose members are considered
pairwise equivalent by R. It is well-know (and easy to check) that X/R is
a partition of X if R is an ordering. Finaly, for any two binary relations
R and R”, we denote by R △ R” their symmetric set difference defined by
R △ R” = (R ∪R”)\(R ∩R”).

We start the analysis by discussing a bit the notion of a compromise
between individual preferences, that will always be depicted as complete
and reflexive binary relations. After all, most efforts in social choice the-
ory have been toward finding a plausible notion of such compromise. The
cornerstone of the compromise’s idea is that of a (Pareto) respect for una-
nimity. It seems indeed that any plausible notion of a compromise between
two different preferences should respect the unanimity of those preferences
whenever it occurs. This idea underlies the following notion of intermedi-
ateness, or betweenness, between two preferences. For any binary relation
R ⊂ X × X, we denote by �R its (possibly empty) non-trivial component
defined by �R = R ∩ [(X ×X)\{(x, y) ∈ X ×X : x = y}]. Hence, �R is the
set of all pairs of distinct elements of X that are compared in one way or
another by R. In what follows, we will often find useful to describe reflexive
binary relations R by their non-trivial component �R.

Definition 1 For any two binary relations R and R” in C, we say that the
binary relation R′ is between R and R” if only if (R∩R”) ⊆ R′ ⊆ (R∪R”).

In words, R′ is between R and R
′′
if R′ always agrees with the unanimity

of R and R” - when the latter occurs - and, somewhat conversely, never
expresses a preference for one alternative over the other if this preference is
not also expressed by either R or R”. We observe trivially that this notion
of betweenness is symmetric: R′ is indeed between R and R” if and only if it
is between R” and R. The definition of betweenness applies therefore to any
three binary relations and generates as such a ternary relation onX. It turns
out that an alternative - but actually equivalent - definition of betweenness
can be formulated for complete binary relations. This equivalent definition
makes, in our view, the notion of betweenness underlying Definition 1 even
more intuitive.

Lemma 1 Let R, R′ and R′′ be three complete binary relations on X. Then
R′ is between R and R′′ as per Definition 1 if only if it satisfies:
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(i) (x, y) ∈ R and (x, y) ∈ R′′ =⇒ (x, y) ∈ R′ and,
(ii) (x, y) ∈ RA and (x, y) ∈ R

′′

A =⇒ (x, y) ∈ R′A

Proof. For one direction of the implication (that does not actually require
completeness), let R, R′ and R′′ be three complete binary relations on X
such that R′ is between R and R” as per Definition 1. Since (R∩R”) ⊆ R′

,
Condition (i) of the Lemma follows. Assume now that x and y are two
alternatives such that (x, y) ∈ RA and (x, y) ∈ R

′′

A. From the definition of
the asymmetric factor of a binary relation, one has (x, y) ∈ R and (x, y) ∈
R′′ and, since (R∩R”) ⊆ R′, one must have (x, y) ∈ R′. We now show that
(y, x) /∈ R′. Suppose to the contrary that (y, x) ∈ R′. Since R′ ⊆ (R∪R′′), one
must have either (y, x) ∈ R or (y, x) ∈ R′′. But neither of these statements
is consistent with the fact that both (x, y) ∈ RA and (x, y) ∈ R

′′

A hold.
For the other direction of the implication, assume that R, R′ and R′′ are
three complete binary relations on X for which Statements (i) and (ii) of
the lemma holds. Statement (i) clearly implies that (R∩R”) ⊆ R′. Consider
now any two alternatives x and y in X such that neither (x, y) ∈ R nor
(x, y) ∈ R′′ is true. We wish to show that (x, y) ∈ R′ does not hold. To
see this, we observe that, since R and R”are complete, the fact that neither
(x, y) ∈ R nor (x, y) ∈ R′′ is true implies that (y, x) ∈ RA and (y, x) ∈
R′′A. By Statement (ii) of the lemma, this implies that (y, x) ∈ R′A, which
implies in turn, from the very definition of the asymmetric factor of a binary
relation, that (x, y) /∈ R′, as required.

Lemma 1 thus provides additional intuition about what it means for a
preference to be "between" two others. A preference is between two others
if and only it results from a (Paretian) compromise between those prefer-
ences. For any two preferences R and R”, we let B(R,R”) = {R′ ∈R:
|R′ is between R and R”}. Since, for any two preferences R and R”, both
R and R” are (trivially) between R and R”, the set B(R,R”) is never empty.
Indeed, the notion of betweenness introduced by Definition 1 is a weak one
that does not rule out the possibility that some (or all) of the three pref-
erences R, R′ and R′′ involved in the definition be the same. This suggests
the possibility of introducing the additional notion of strict betweenness as
follows.

Definition 2 For any two distinct binary relations R and R” in R, we say
that R′ is strictly between R and R” if only if one has (R ∩ R”) ⊆ R′ ⊆
(R ∪R”), R′ �= R and R” �= R′ .

For any two distinct relation R and R” in C, we let B(R,R”) = {R′ ∈R:
|R′ is strictly between R and R”}. The notion of strict betweenness just
introduced opens the possibility for two distinct binary relations R and R”
in C to have no preference that lie strictly between them (and thus to have
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B(R,R′) = ∅). For example, if X = {a, b, c}, the distinct orderings R and
R” defined by:

�R = {(a, b), (b, c), (a, c)} and,
�R′′ = {(a, b), (b, a), (b, c), (a, c)}

have no ordering that lie strictly between them.

Any two distinct binary relations that have no preference that lie strictly
between them will be called "adjacent". We formally defined this notion of
adjacency between binary relations as follows.

Definition 3 Two distinct binary relations R and R” in C are said to be
adjacent if they are such that B(R,R′) = ∅.

The following lemma establishes an alternative definition of adjacency
between two distinct preferences.

Lemma 2 Two distinct binary relations R and R” in C are adjacent as per
Definition 3 if and only if they are such that #(R △ R”) = 1.

Proof. Suppose first that R and R” are two distinct binary relation such
that #(R △ R”) = 1. Since R and R” are distinct, there exists a pair of
alternatives (x, y) ∈ X ×X such that either (i) (x, y) ∈ R and (x, y) /∈ R”
or (ii) (x, y) ∈ R” and (x, y) /∈ R. The two cases being symmetric, we
only consider the first of the two. Since #(R △ R′) = 1, one must have
(x′, y′) ∈ R∩R” for all (x′, y′) ∈ R∪R” such that (x′, y′) �= (x, y). In order
for a binary relation R′ to be between R and R” as per Definition 1, one must
thus have (x′, y′) ∈ R′ for all (x′, y′) ∈ R ∪R” such that (x′, y′) �= (x, y). If
now (x, y) ∈ R′, then R′ = R. If on the other hand (x, y) /∈ R′, then R′ = R”.
Hence, one cannot have both R′ �= R and R′ �= R”. To prove the other
direction of the implication, suppose that #(R △ R”) > 1. This means that
there are at least two distinct pairs of alternatives (x, y) and (x′, y′) ∈ X×X
such that {(x, y), (x′, y′)} ⊂ R∪R” and {(x, y), (x′, y′)}∩ (R∩R”) = ∅. We
consider several cases.
(i) {(x, y), (x′, y′)} ⊂ R\R”.
(ii) {(x, y), (x′, y′)} ⊂ R”\R.
(iii) (x, y) ∈ R\R” and (x′, y′) ∈ R”\R
(iv) (x, y) ∈ R”\R and (x′, y′) ∈ R\R”
’If case (i) holds, then the binary relation R′ = R” ∪ {(x, y)} is distinct
from both R and R” and is between them as per Definition 1. Similarly, if
case (ii) holds, the binary relation R′ = R ∪ {(x, y)} would be distinct from
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both R and R” and between them as per Definition 1. In Case (iii), the
binary relation R′ = R”∪ {(x, y)} would be distinct from R” (by containing
(x, y)) and from R (by containing (x′, y′)), while being clearly between both
R and R” as per Definition 1. Similarly for case (iv), the binary relation
R′ = R ∪ {(x, y)} would be distinct from R (by containing (x, y)) and from
R” (by containing (x′, y′)), while being again between both R and R”as per
Definition 1. This completes the proof.

Lemma 2 thus provides a simple test to check wether or not two binary
relations are adjacent. Two binary relations are adjacent if and only if they
differ from each other by exactly one ordered pair.

We now introduce the notion of a majoritarian preference relation asso-
ciated to a given profile of such preferences. Our definition of such a notion
is as follows.

Definition 4 Given a profile of n complete and reflexive preference rela-
tions (R1, ..., Rn) on X for some integer n ≥ 2, we say that the complete
and reflexive binary relation R on X is majoritarian for (R1, ..., Rn) if it
satisfies, for every x and y ∈ X, #{i : (x, y) ∈ Ri} > n/2 =⇒ (x, y) ∈ R
and #{i : (x, y) ∈ RAi} > n/2 =⇒ (x, y) ∈ RA

We observe that a profile of preferences (R1, ..., Rn) will typically have
many such majoritarian preferences. One of them is the classical majority
rule defined, for every profile of preferences (R1, ..., Rn), by (x, y) ∈ R ⇐⇒
#{i : (x, y) ∈ Ri} ≥ n/2. Another is the Kemeny-Young rule characterized
by Young and Levenglick (1978). We record for further reference the follow-
ing obvious remark concerning the definition of a Majoritarian preference.

Remark 1 A complete and reflexive preference R ∈ C is Majoritarian with
respect to the profile (R1, ..., Rn) (for some integer n ≥ 2) if and only if it
satisfies, for every x and y ∈ X, (x, y) ∈ R =⇒ #{i : (x, y) ∈ Ri} ≥ n/2
and (x, y) /∈ R =⇒ #{i : (x, y) ∈ Ri} ≤ n/2.

Proof. In one direction, assume that R ∈ C is Majoritarian in the sense of
Definition 4 for the profile (R1, ..., Rn) ∈ Cn and let x and y be alternatives
in X such that (x, y) ∈ R. Suppose by contradiction that #{i : (x, y) ∈
Ri} < n/2. Since the preferences (R1, ..., Rn) are complete, this means that
#{i : (y, x) ∈ RAi} = n−#{i : (x, y) ∈ Ri} > n/2. But if R is Majoritarian
with respect to (R1, ..., Rn) as per definition 4, one must have (y, x) ∈ RA,
which is a contradiction. Similarly, assuming again that R is a complete and
reflexive binary relation that is Majoritarian in the sense of Definition 4 with
respect to the profile of preferences (R1, ..., Rn) ∈ Cn, suppose there are some
x and y ∈ X for which one has (x, y) /∈ R. Since R is complete, one must
have (y, x) ∈ RA. But then, assuming that #{i : (x, y) ∈ Ri} > n/2 would
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contradict the first requirement of Definition 4 that R is majoritarian. Hence
#{i : (x, y) ∈ Ri} > n/2 ≤ n/2 must hold. The proof for the other direction
is immediate.

The main contribution of the paper is to characterize any majoritarian
preference over some profile as a minimizer of the sum of the pairwise dis-
tances between itself and the preferences of the profile for some distance
function that numerically represents a notion of pairwise dissimilarity be-
tween preferences. As it turns out, the distance-minimizing property of a
majoritarian preference depends crucially upon a property of the distance
that we refer to as "between-additivity". We introduce as follows this prop-
erty along with a formal definition of a distance function on C × C.

Definition 5 (Distance) A function d : C×C → R+ is a distance func-
tion if it satisfies the following properties:
(i) Non-negativity: d(R1, R2) ≥ 0 for all R1, R2 ∈ C.
(ii) Identity only at equality: d(R1, R2) = 0 if and only if R1 = R2.
(iii) Symmetry: d(R1, R2) = d(R2, R1) for all R1, R2 ∈ C.
(iv) Triangle Inequality: d(R1, R3) ≤ d(R1, R2) + d(R2, R3)
Moreover, a function d : C × C → R+ is called a between-linear distance
function if it satisfies, in addition to (i)-(iv):
(v) d(R,R”) = d(R,R′) + d(R′, R”) for every R, R′ and R” ∈ C such that
R′ ∈ B(R,R”)

The crucial property of a distance insofar as representativeness of the
majority relation goes is the property (v). This property requires the dis-
tance to be "additive" with respect to any combination of two preferences
taken from three preferences that are connected by a betweenness relation.
A clear implication of "between-linearity" is consistency with respect to the
betweenness relation. Any preference that is between two others will always
be more similar to any of these two preferences than the two preferences
themselves. We state formally this as follows.

Remark 2 Let d : C×C → R+ be a between-additive distance function
Then, for any three distinct R, R′ and R” ∈ C such that R′ ∈ B(R,R”), one
has:

d(R,R′) < d(R,R′′) and d(R′, R′′) < d(R,R′′)

Proof. Since d satisfies Triangle inequality, one has:

d(R,R′′) ≤ d(R,R′) + d(R′, R”)
The conclusion then follows at once from the fact that d satisfies non-
negativity and identity at equality, and the assumption that R, R′ and R′′

are all distinct.
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We now provide two well-know examples of distances between prefer-
ences, the first of which satisfying between-additivity.

Example 1 The Kemeny notion of dissimilarity (see e.g. Kemeny (1959)
and Kemeny and Snell (1962)). This distance function, denoted dK , is
defined as follows:

dK(R1, R2) ≥ dK(R3, R4)⇐⇒ #(R1 △ R2) ≥ #(R3 △ R4)

This distance function defines the dissimilarity between any two preferences
by the number of pairs of alternatives on ranking of which the two preferences
disagree. The reader can verify that this widely discussed distance is indeed
a between-linear distance.

Example 2 The Spearman (1904) notion of dissimilarity (see Monjardet
(1998) for a comparison of the Kemeny and the Spearman notions of simi-
larity among linear orderings). This distance function dS, which only applies
to orderings, is defined by:

dS(R1, R2) ≥ d(R3, R4)⇐⇒ [
�

x∈X

(r1(x)−r2(x))2]1/2 ≥ [
�

x∈X

(r3(x)−r4(x))2]1/2

where, for i = 1, 2, 3, 4, ri(x) denoted the rank of alternative x in the ordering
Ri defined by:

ri(x) = 1 +#{A ∈ X/Ri : (a, x) ∈ RAi for a ∈ A}

It is readily seen that the Spearman distance is a distance function from
C × C to the real but is not between-linear .For example if we take X =
{a, b, c} and �R1∩ = {(a, b), (b, c), (a, c)}, �R2 = {(b, c), (b, a), (a, c)} �R3 =
{(c, b), (b, a), (c, a)}, it is clear that R2 ∈ B(R1, R3). However:

dS(R1, R3) = [(3− 1)2 + (2− 2)2 + (1− 3)2]1/2 = 2
√
2

< dS(R1, R2) + d(R2, R3)

= [(3− 2)2 + (3− 2)2]1/2 + [(2− 1)2 + (3− 2)2 + (3− 1)2]1/2

= (1 +
√
3)
√
2

We now turn to the two main results of this paper. The first one states
that a preference minimizes the sum of distances between itself and a collec-
tion of preferences for some between-additive distance function if and only
if this preference is majoritarian with respect to the considered collection of
preference. We state formally this result as follows.
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Theorem 1 Let d be a between-additive distance function and, for some in-

teger n, let (R1, ..., Rn) ∈
�

n∈N

Cn be a profile of complete preference relations.

Then the complete preference R∗ ∈ C satisfies the inequality
n�

i=1

d(Ri, R
∗) ≤

n�

i=1

d(Ri, R)) ∀R ∈ C. (1)

if and only if R∗ is majoritarian for (R1, ..., Rn).

Proof.

Sufficiency. Suppose that R∗ and d are, respectively, a Majoritarian prefer-
ence relation for a profile (R1, ..., Rn) for some integer n ≥ 2 and a between-
additive distance function. Consider any profile of preferences (R1, ..., Rn) ∈
D (for some n ∈ N) and any R ∈ C. We need to show that

�n
i=1 d(Ri, R

∗) ≤�n
i=1 d(Ri, R). Proving this is immediate if R = R∗. Hence, we assume

that R �= R∗. Our proof strategy is to construct a sequence of preferences
(R0, R1, . . . , Rq) in such way that R0 = R, Rq = R∗and the following holds:

n�

i=1

d(Ri, R
j+1) ≤

n�

i=1

d(Ri, R
j) ∀ j ∈ {0, q − 1}.

We construct the sequence as follows, starting with R0 = R, and exploiting
the fact that R �= R∗.
(a) Rj\{xj, yj} = Rj−1\{xj , yj) and Rj = Rj−1 ∪ {(xj, yj)} for some
(xj , yj) ∈ X × X such that (xj, yj) ∈ R∗ and (xj, yj) /∈ Rj−1 if there are
such (xj, yj) and by:
(b) Rj\{xj , yj} = R0\{xj , yj) and Rj = Rj−1\{(xj, yj)} if there are no
pair (x, y) ∈ X ×X satisfying the condition mentioned in (a) but there are
(xj , yj) ∈ Rj−1 such that (xj, yj) /∈ R∗.
Observe that this sequence is not, in general, unique. Indeed, at any step
t = 1, ..., q, there can be typically many pairs either of the type mentioned
in (a) or of the type mentioned in (b). But any sequence constructed in this
way will do. Observe also, thanks to the alternative definition of a Majori-
tarian decision function provided by Remark 1, that the terminal step q of
the sequence is reached when there are no pair (xq, yq) ∈ X ×X such that
(xq, yq) ∈ R∗ and (xq, yq) /∈ Rq−1 and there are also no pair (xq, yq) ∈ Rq−1
such that (xq, yq) /∈ R∗. This terminal step obviously corresponds to the
situation where Rq = R∗. We now show that:

tn�

i=1

d(Ri, R
j) ≤

n�

i=1

d(Ri, R
j−1) (2)

for all j = 1, ..., q. A preliminary step for this is the observation that if
two distinct preferences R and R′′ are adjacent, then for any preference

10



R′ distinct from both R and R”, one must have either R ∈ B(R′, R”) or
R” ∈ B(R,R′). To see this, we first recall that by Lemma 2, R and R′′

are adjacent if and only if they differ only by one pair (say (x, y)). Suppose
without loss of generality (up to a permutation of the role of R and R′′ in
the argument) that (x, y) ∈ R and (x, y) /∈ R′′. Consider then any preference
R′ distinct from both R and R′′. If (x, y) ∈ R′, then one has that R′ ∩R′′ ⊂
R ⊂ R′ ∪ R′′ so that R ∈ B(R′, R′′). If on the other hand (x, y) /∈ R′, then
one has R∩R′ ⊂ R′′ ⊂ R∪R′ and, therefore, R′′ ∈ B(R,R′). We now prove
Inequality (2). It is clear by the definition of the sequence given above that
Rj and Rj+1 are adjacent. They either differ by a pair (xj, yj) such that
(xj , yj) ∈ R∗ and (xj, yj) /∈ Rj−1 (Case (a)) or by a pair (xj, yj) ∈ Rj−1
such that (xj, yj) /∈ R∗ (Case (b)). If we are in Case (a), then (xj, yj) ∈
R∗ which implies, by definition of R∗ being Majoritarian (Remark 1), that
#{i : (xj, yj) ∈ Ri} ≥ n/2. The observation made above about the adjacent
preferences Rj−1 and Rj and any other preference, including one observed
in the profile (R1, ..., Rn) applies. In particular, for any individual i such
that xj Ri yj, one has that Ri∩Rj−1 ⊂ Rj ⊂ Ri∪Rj−1. Hence for any such
i, Rj ∈ B(Ri, Rj−1). We therefore have, using between-additivity of d:

d(Ri, R
j−1) = d(Ri, R

j) + d(Rj−1, Rj) (3)

Analogously, for all other h (if any) such that (xj , yj) /∈ Rh, we have that
Rh ∩ Rj ⊂ Rj−1 ⊂ Rh ∪ Rj and, therefore, that Rj−1 ∈ B(Rh, Rj). Using
again between additivity of d, we can write:

d(Rh, R
j) = d(Rh, R

j−1) + d(Rj−1, Rj)

or:
d(Rh, R

j−1) = d(Rh, R
j)− d(Rj−1, Rj) (4)

Summing Equalities (3) and (4) over all concerned individuals and rearrang-
ing yields:

�

i:(xj ,yj)∈Ri

d(Ri, R
j−1) +

�

h:(yj ,xj)∈RAi

d(Rh, R
j−1) =

�

i:(xj ,yj)∈Ri

d(Ri, R
j)

+
�

h:(yj ,xj)∈RAi

d(Rh, R
j) + [#{i : (xj, yj) ∈ Ri} −#{h : (yj , xj) ∈ RAh }]d(Rj−1, Rj)]

≥
�

i:(xj ,yj)∈Ri

d(Ri, R
j) +

�

h:yjRAiyj

d(Rh, R
j)

because d(Rj−1, Rj) > 0 and #{i : (xj , yj) ∈ Ri} ≥ #{h : (yj, xj)RAh xj}.
If we are in Case (b), then there is a pair (xj , yj) ∈ Rj−1 such that (xj , yj) /∈
R∗ and Rj = Rj−1\{(xj, yj)}. Since (xj, yj) /∈ R∗ and R∗ is complete, one
has that yj R∗ xj. Since R∗is majoritarian relative to (R1, ..., Rn), we must
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have - thanks to Remark 1 - that #{i : (xj, yj) ∈ Ri} < n/2. Applying
again the above reasoning on the adjacent pairs Rj and Rj−1, we have that
Rh ∩Rj−1 ⊂ Rj ⊂ Rh ∪Rj−1 for any individual h such that (xj, yj) /∈ Rh.
Hence one has Rj ∈ B(Rh, Rj−1) for any such individual so that one can
write, using the additivity of d:

d(Rh, R
j−1) = d(Rh, R

j) + d(Rj−1, Rj) (5)

Similarly, for any individual i such that (xj, yj) ∈ Ri, we have Ri ∩ Rj ⊂
Rj−1 ⊂ Ri ∪Rj and, therefore, Rj−1 ∈ B(Ri, Rj) so that one can write for
any such individual (again using the additivity of d):

d(Ri, R
j) = d(Ri, R

j−1) + d(Rj−1, Rj)

or:
d(Ri, R

j−1) = d(Ri, R
j)− d(Rj−1, Rj) (6)

Summing Equalities (5) and (6) over all the relevant individuals and rear-
ranging yields:

�

h:(yj ,xj)∈RAi

d(Rh, R
j−1) +

�

i:(xj ,yj)∈Ri

d(Ri, R
j−1) =

�

h:(yj ,xj)∈RAi

d(Rh, R
j)

+
�

i:(xj ,yj)∈Ri

d(Ri, R
j) + [#{h : (yj , xj) ∈ RAh} −#{i : (xj, yj) ∈ Ri}]d(Rj−1, Rj)

≥
�

h:(yj ,xj)∈RAh

d(Rh, R
j) +

�

i:(xj ,yj)∈Ri

d(Ri, R
j)

because d(Rj−1, Rj) > 0 and #{h : (yj, xj) ∈ RAh} ≥ #{i : (xj , yj) ∈ Ri}.
This completes the proof that Inequality (3) holds for every j = 1, ..., q. The
sufficiency part of the theorem is then proved by the transitive repetition of
this inequality.
Necessity. Let R∗ be a preference in C that is not majoritarian for a profile
of complete preferences (R1, R2, ..., Rn). This means that there are alter-
natives x and y ∈ X for which either (i) #{i : (x, y) ∈ Ri} > n/2 and
(x, y) /∈ R∗ or (ii) #{i : (x, y) ∈ RAi} > n/2 and (x, y) /∈ R∗A. Suppose
first that case (i) holds. Consider then any between-additive distance func-
tion d : C × C → R+. We wish to show that there exists a preference R′ ∈ C
such that

n�

i=1

d(Ri, R
′) <

n�

i=1

d(Ri, R
∗).

For this sake, we simply define R′ by R′ = R∗ ∪ {(x, y)}. We first prove
that, for any i ∈ {1, ..., n} such that (x, y) ∈ Ri, one has R

′ ∈ B(Ri, R∗).
Indeed, consider any (a, b) ∈ Ri ∩R∗. We know that (a, b) �= (x, y) (because
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by assumption (x, y) /∈ R∗). Since any other pair (a, b) ∈ Ri∩R∗ also belongs
to R∗, it belongs to R∗ ∪ {(x, y)} = R′. Consider now any pair (a, b) ∈ R′.
Either (a, b) = (x, y) in which case (x, y) ∈ Ri or (a, b) �= (x, y) in which
case (a, b) ∈ R∗ = R′\{(x, y)}. Hence R′ ⊂ Ri ∪R∗. We now show that for
any h ∈ {1, ..., n} (if any) such that (x, y) /∈ Rh, one has R∗ ∈ B(Rh, R′).
Indeed, consider any (a, b) ∈ Rh ∩ R′. Since (x, y) /∈ Rh, we know that
(a, b) �= (x, y). Hence (a, b) ∈ R′\{x, y} = R∗. Moreover, it is clear that
R∗ ⊂ R′ ⊂ R′ ∪Rh. Now, exploiting the Between-additivity of d, one has

n�

i=1

d(Ri, R
′) =

�

i:(x,y)∈Ri

d(Ri, R
′) +

�

h:(x,y)/∈Rh

[d(Rh, R
∗) + d(R∗, R′)] (7)

and:

n�

i=1

d(Ri, R
∗) =

�

h:(x,y)/∈Rh

d(Rh, R
∗) +

�

i:(x,y)∈Ri

[d(Ri, R
′) + d(R′, R∗)] (8)

Subtracting (7) from (8 yields (after cancelling common terms).

n�

i=1

d(Ri, R
′)−

n�

i=1

d(Ri, R
∗) = [#{i : (x, y) ∈ Ri} −#{h : (x, y) /∈ Rh}]d(R′, R∗)

> 0

because #{i : (x, y) ∈ Ri} > n/2 ≥ #{h : (x, y) /∈ Rh} and d(R′, R∗) > 0.
The argument for the case (ii) is of similar nature and the details are left
to the reader.

This theorem thus characterizes majoritarian collective decision func-
tions as "representative" of the preferences that they take the majority of
in the sense of minimizing any between-additive numerical distance between
these preferences. The next theorem characterizes, somewhat dually, the
property of between-additivity as being essential for the ability of majori-
tarian collective decision function to be representative in the sense of min-
imizing distance. Specifically, we prove that if a majoritarian preference
for a given preference profile is to be distance-minimizing with respect to
this profile for some distance function, then the distance function must be
between-additive.

Theorem 2 Suppose d : C × C → R+ is a distance function such that, for
every profile (R1, ..., Rn) ∈ Cn for some n ≥ 2, a majoritarian preference R∗
for this profile satisfies the inequality:

n�

i=1

d(Ri, R
∗) ≤

n�

i=1

d(Ri, R) ∀R ∈ C. (9)
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Then d is between-additive.

Proof. Suppose that a distance d : C × C → R+ is not between-additive.
This means that there are complete binary relations R1, R2 and R3 on X
such that R2 ∈ B(R1, R3) and

d(R1, R3) < d(R1, R2) + d(R2, R3) (10)

using the Triangle inequality. Consider then the profile of preferences (R1, R3).
We first establish that R2 is Majoritarian on the profile (R1, R3). To see this,
we use Remark 1, and we first consider any x and y such that (x, y) ∈ R2.
Since R2 ∈ B(R1, R3), one must have (x, y) ∈ R1 ∪R3. Hence, at least one
of the two preferences (R1, R3) in the profile must contain the pair (x, y).
Hence #{i : (x, y) ∈ Ri} ≥ 1 = n

2 . Consider now x and y such that (x, y) /∈
R2. Since R2 ∈ B(R1, R3) and, as a result, R1 ∩ R3 ⊂ R2, one must have
that (x, y) /∈ R1 ∩ R3. Hence there can be at most one of the two prefer-
ences R1 and R3 that contains the pair (x, y). Put differently #{i : (x, y) ∈
Ri} ≤ 1 = n

2 , as required by the second condition of Remark 1. Hence R2
is Majoritarian on the profile (R1, R3). However, R2 does not minimize the
sum of distance between itself and the two individual preferences of the profile
because, from Inequality 10 and the property of identity of the indiscernible,
one has (using symmetry):

d(R1, R1)+d(R1, R3) = d(R1, R3) < d(R1, R2)+d(R2, R3) = d(R2, R1)+d(R2, R3).

Hence R1 (but the argument would work just as well for R3) has a strictly
smaller aggregate distance from the individual preferences of the profile (R1, R3)
than R2. This completes the proof.

Remark 3 With the exception of Remark 2 above, the proof of Theorem 2
is the only instance where some use is made of the Triangle inequality.

As shown in Example 2 above, there are many plausible notions of
distances between preferences that are not between additive. However, the
Kemeny notion of distance is additive. One may of course wonder whether
there are other notions of distance that are Between-Additive. The following
example shows that there are quite a few. Hence, the results of this paper
are significant generalizations of the fact that a Majoritarian preference min-
imizes the Kemeny distance between itself and the preferences from which
it emanates.

Example 3 Consider any function δ : X×X → [0, 1] be such that δ(x, x′) =
δ(x′, x) for all x, x′ ∈ X. Functions like this clearly exist. For example, taking
any linear ordering R of X, one can define δR by:

δR(x, x′) =
| rR(x)− rR(x′) |

#X
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where rR(x) is the rank of x under R defined (in the case of a linear ordering)
by:

rR(x) = 1 +#{y ∈ X : (y, x) ∈ RA}
δR so defined obviously maps X × X into [0, 1] and satisfies δ(x, x′) =
δ(x′, x) for all x, x′ ∈ X. For any such function δ therefore, define a function
dδ : C× C → R+ as follows:

dδ(R1, R2) =
�

{(x,x′)∈R1 R2:x�=x′}

δ(x, x′).

It is easily verified that dδ so defined satisfies the three first Properties
of Definition 5.

• Non-negativity: This holds by definition of δ.

• Identity only at equality of: For any R1 = R2 we have (R1\R2) =
(R2\R1) = φ. Therefore, dα(R1, R1) = 0.

• Symmetry: Since (R1\R2) ∪ (R2\R1) = (R1\R2) ∪ (R2\R1) for all
R1, R2 ∈ C, we have dα(R1, R2) = dα(R2, R1).

We now show that dδ satisfies between-additivity. That is, for any R1, R2, R3
such that R2 ∈ B(R1, R3), we show that dδ(R1, R2)+dδ(R2, R3) = dδ(R1, R3).
From the definition of dδ, one can write:

dδ(R1, R2)+d
δ(R2, R3) =

�

(x,x′)∈R1△R2:x�=x′

δ(x, x′)+
�

(y,y′)∈R1△R2:y �=y′

δ(y, y′)

Since (R\R′) ∪ (R′\R) = (R ∪ R′)\(R ∩ R′) for all complete binary
relations R and R′, one can also write:

dδ(R1, R2)+d
δ(R2, R3) =

�

(x,x′)∈(R1∪R2)\(R1∩R2):x�=x′

δ(x, x′)+
�

(y,y′)∈(R2∪R3)\(R2∩R3):y �=y′

δ(y, y′)

(11)

We now observe that the sets (R1 ∪R2)\(R1 ∩R2) and (R2 ∪R3)\(R2 ∩
R3) are disjoint. Indeed, suppose that (x, x′) ∈ (R1 ∪R2)\(R1 ∩R2). Then,
either (i) (x, x′) ∈ R1\R2 or (ii) (x, x′) ∈ R2\R1. In case (i), we know
that (x, x′) /∈ R3\R2 (by definition of R2 ∈ B(R1, R3)). Since by assumption
(x, x′) /∈ R2, one has (x, x′) /∈ R2\R3. Hence (x, x′) /∈ R2\R3 ∪ R3\R2 =
(R2∪R3)\(R2∩R3). In case (ii), we know by definition that (x, x′) /∈ R3/R2
(because (x, x′) ∈ R2). Since R2 ∈ B(R1, R3), one can not have (x, x′) ∈
R2\R3 (because R2 ⊂ R1∪R3). Hence any pair in the set (R1∪R2)\(R1∩R2)
is not in the set (R2 ∪R3)\(R2 ∩R3) so that the two sets are disjoint. We
now show that

[(R1 ∪R2)\(R1 ∩R2)] ∪ [(R2 ∪R3)\(R2 ∩R3)] = (R1 ∪R3)\(R1 ∩R3)
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We first prove that [(R1 ∪R2)\(R1 ∩R2)] ∪ [(R2 ∪R3)\(R2 ∩R3)] ⊂ (R1 ∪
R3)\(R1 ∩ R3). Consider for this sake any pair of alternatives (x, x′) ∈
[(R1∪R2)\(R1∩R2)]∪ [(R2∪R3)\(R2∩R3)]. Four (non-mutually exclusive)
cases are compatible with this consideration:
(i) (x, x′) ∈ R1\R2
(ii) (x, x′) ∈ R2\R1
(iii) (x, x′) ∈ R2\R3
(iv) (x, x′) ∈ R3\R2
Consider Case (i). Since R2 ∈ B(R1, R3), one can not have (x, x′) ∈ R3
(because in this case, one would have (x, x′) ∈ R1∩R3 ⊂ R2, in contradiction
of (x, x′) ∈ R1\R2). Hence (x, x′) ∈ R1\R3 ⊂ (R1 ∪R3)\(R1 ∩R3). Suppose
now that we are in Case (ii). By assumption (x, x′) /∈ R1 and (x, x

′) ∈
R2 ⊂ R1 ∪ R3 (since R2 ∈ B(R1, R3)). Hence (x, x′) ∈ R3\R1 ⊂ (R1 ∪
R3)\(R1 ∩R3). For Cases (iii) and (iv), we just apply the argument of case
(ii) and (i) (respectively) up to permuting R1 and R3. We now prove that
(R1 ∪R3)\(R1 ∩R3) ⊂ [(R1 ∪R2)\(R1 ∩R2)] ∪ [(R2 ∪R3)\(R2 ∩R3)]. Let
(x, x′) ∈ (R1∪R3)\(R1∩R3). This means either that (x, x′) ∈ R1\R3 or that
(x, x′) ∈ R3\R1. In the first case either (x, x′) ∈ R2 (in which case (x, x′) ∈
R2\R3 ⊂ [(R1 ∪R2)\(R1 ∩R2)]∪ [(R2 ∪R3)\(R2 ∩R3)]) or (x, x′) /∈ R2 (in
which case (x, x′) ∈ R1\R2 ⊂ [(R1∪R2)\(R1∩R2)]∪ [(R2∪R3)\(R2∩R3)]).
The argument for the other case is similar. Since the sets (R1∪R2)\(R1∩R2)
and (R2 ∪R3)\(R2 ∩R3) are disjoint and are such that

[(R1 ∪R2)\(R1 ∩R2)] ∪ [(R2 ∪R3)\(R2 ∩R3)] = (R1 ∪R3)\(R1 ∩R3)

one can write Equality (11) as:

dδ(R1, R2) + d
δ(R2, R3) =

�

(x,x′)∈(R1∪R2)\(R1∩R2):x�=x′

δ(x, x′) +
�

(y,y′)∈(R2∪R3)\(R2∩R3):y �=y′

δ(y, y′)

=
�

(x,x′)∈(R1∪R3)\(R1∩R3):x�=x′

δ(x, x′)

= dδ(R1, R3)

as required by between-addivity.

3 Properties of notions of preference dissimilarity
that give rise to between-additive distances.

It is of interest to identify the properties of qualitative notions of prefer-
ences dissimilarity that can be numerically represented by between-additive
functions. In this section, we provide an imperfect attempt in this direction.

Our attempt starts with an underlying notion of dissimilarity taking the
form of a quaternary relation Q on C or, alternatively, a binary relation on
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C × C. We interpret the statement (R1, R2) Q (R3, R4) as meaning that
preference R1 is weakly more dissimilar from R2 than R3 is from R4. A
corresponding interpretation is given to the comparative statements made
with QA (strictly more dissimilar) and QS (equally dissimilar). We restrict
attention to primitive notions of dissimilarity that satisfy the following ax-
ioms

Axiom 1 Ordering. Q is an ordering of C × C.

Axiom 2 Symmetry. For all R,R′ ∈ C, (R,R′) Q (R′, R).

Axiom 3 Strict recording of distinctiveness. For all distinct R,R′ ∈ C,
(R,R′) QA (R,R).

Axiom 4 Perfect similarity for identical preferences. For all R,R′ ∈
C, (R,R) Q (R′, R′).

Axiom 5 Segmental Betweenness Consistency. For all preferences

R1, R2, R3, R
1
, R

2
and R

3 ∈ C such that R2 ∈ B(R1, R3) and R2 ∈ B(R1, R3),
one must have:
(i) (R1, R2) Q (R

1
, R

2
) and (R

1
, R

3
) Q (R1, R3) =⇒ (R

2
, R

3
) Q (R2, R3)

and
(ii) (R1, R2) QA (R

1
, R

2
) and (R

1
, R

3
) Q (R1, R3) or (R1, R2) Q (R

1
, R

2
)

and (R
1
, R

3
) QA (R

1, R3) =⇒ (R
2
, R

3
) QA (R

2, R3)

The properties captured by Axioms 1-4 are quite intuitive when ap-
plied to a notion of qualitative dissimilarity between preferences (or for that
matter to any objects). The ordering Axiom just says that a dissimilarity
comparative statement can be made for any two pairs of preferences. It also
requires, through transitivity, that these comparative statements be con-
sistent with each other. The symmetry requirement is also natural when
applied to statements about dissimilarities of objects. A bit strong, but
nonetheless natural, is also the requirement for two distinct preferences to
be strictly more dissimilar than any one of the two preferences duplicated.
There is indeed a strong presumption that there would be no-dissimilarity
whatsoever between one preference and itself. Axiom 4 makes this presump-
tion formal.

The only axiom that is worth discussing a bit more is the requirement
that dissimilarity statements about pairs of preferences be "segmentally con-
sistent" with the notion of betweenness provided by Definition 1. It basically
imposes that the dissimilarity from any two preferences one the one hand
and any preference that is between the two be endowed with a "segmental
looking" structure. Consider indeed two preferences, and consider a prefer-
ence that is between these two. One can view these three preferences as lying
on some segment, the end point of which being the two extreme preferences,
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and the middle point being the intermediate preference. Axiom 5 requires
that all such segments made of three preferences, one lying between the two
others be ordered by the quaternary relation in a way that respect their
"segmental" nature. That is, if one segment of three preferences is longer
than another, then it is impossible to have an opposite rankings of all pairs
of sub-segments of the two segments. This is, in substance, what Axiom
5 requires. It is important to observe that, among other things, Axiom 5
requires the quaternary relation Q to be consistent with betweenness in the
sense that the dissimilarity between any two distinct preferences R1 and R2

be strictly larger than the dissimilarity between either of R1 or R2 and any
preference that lies strictly between them. We state this formally as follows.

Lemma 3 If Q is a quaternary relation on C that satisfies Axioms 1 - 5,
then, for any preferences R1, R2 and R3 such that R2 ∈ B(R1, R3), one has
(R1, R3) QA (R

1, R2) and (R1, R3) QA (R
2, R3).

Proof. Suppose that R1, R2 and R3 are three preferences such that R2 ∈
B(R1, R3). We only show that (R1, R3) QA (R1, R2) must hold (the argu-
ment being similar for (R1, R3) QA (R

2, R3)). Assume by contradiction that
(R1, R3) QA (R

1, R2) does not hold. Since by Axiom 1 Q (as a binary rela-
tion on C × C) is, one must have (R1, R2) Q (R1, R3). If we now apply the

Clause (i) of Axiom 5 to the case where the preferences R
1
, R

2
and R

3
men-

tioned in this Axiom are, respectively, R1, R2 and R2, one concludes that
(R2, R2) Q (R2, R3). But this is contradicts Axiom 3 since, by Definition of
strict betweenness, R2 and R3 are distinct.

As an ordering on the set C × C, a quaternary relation Q can be numer-
ically represented by a function d : C × C → R having the property that
(R1, R2) Q (R3, R4) ⇐⇒ d(R1, R2) ≥ d(R3, R4) for any two pairs (R1, R2)
and (R3, R4) of complete binary relations. It is not difficult to see (see e.g.
Krantz, Luce, Suppes, and Tversky (1971), Vol. 2, ch. 14, Theorem 1) that
the function d can be chosen to take positive real values and be such that
d(R1, R2) = 0 if and only if R1 = R2. Moreover, since it numerically repre-
sents a symmetric quaternary relation Q by Axiom 2, d will be a symmetric
function as well. As shown in Theorem 14 of Vol 2 of Krantz, Luce, Suppes,
and Tversky (1971), we can also without loss of generality requires d to sat-
isfy the so-called "triangle inequality" that d(R,R”) ≤ d(R,R′) + d(R′, R”)
for any three preferences R, R′ and R′′. However, as noticed in Remark 3,
the only role played by the Triangle inequality in this paper is to estab-
lish the necessity of the between-additivity of the distance function that a
majoritarian preference systematically minimizes.

However, while Axioms 1-5 are clearly necessary for admitting a nu-
merical representation that is between-additive, they are not sufficient for

18



that purpose. We now provide a set of sufficient conditions for the desired
numerical representation.

We do this partly by imposing structural properties on the quaternary
relation Q that guarantee the possibility of segmentally measuring dissimi-
larity along the lines introduced already by Axiom 5. Imagine in effect that
the comparative dissimilarities of two pairs of preferences, say (R1, R2) and
(R3, R4), could be matched exactly by the dissimilarity between two pref-
erences and some preference lying between them. Specifically, suppose that,
for the preferences R1, R2, R3 and R4, there are preferences R, R′ and R′′

such that R′′ ∈ B(R,R′), (R,R”) QS (R1, R2) and (R”, R′) QS (R3, R4).
This means that the dissimilarities of the pairs (R1, R2) and (R3, R4) are
measured by two "adjacent" segments along a "line " connecting R and R′

and passing trough some intermediate preference R′′. The property we are
about to introduce imposes some existential restrictions on the possibility
of linearly measuring in this fashion dissimilarity. It does not assume that
this possibility exists for any two pairs of preferences. But it does require
that when this possibility exists for specific dissimilarity comparisons, it also
exists for others. Before introducing this property, we formally define what
we mean by linear dissimilarity measurement.

Definition 6 The dissimilarity of two pairs of preferences (R1, R2) and
(R3, R4) is said to be compared along the line (R,R”), which we denote
by (R1, R2) ◦L (R3, R4) = (R,R”), if there exists some R′ ∈ B(R,R”)
with R′ �= R and R′ �= R′′ such that (R,R′) QS (R1, R2) and (R′, R”) QS
(R3, R4).

From a formal point of view, the possibility of comparing the dissimilarity
of two pairs of preferences along a line defines a binary operation ◦L on the
set C × C or, equivalently, a function from (C × C)× (C × C) to C × C.
This function is not empty because there are many pairs of preferences (R1,
R2) and (R3, R4) whose dissimilarity can be compared in this fashion. In
effect, and trivially, any pair of preferences (R1, R2) and (R3, R4) such that
R2 = R3 ∈ B(R1, R4) has this property. However the binary operation ◦L is
not defined for all pairs of preferences in R × C . Indeed, since X is finite,
there are only finitely many pairs in C × C. One of these pairs - ( �R, �R”) say
- is therefore maximally dissimilar in the sense that ( �R, �R”) Q (R,R′) for
any two preferences R and R′ in C. It would then be clearly impossible with
a quaternary relation Q satisfying Axioms 1-5 to compare the dissimilarity
of ( �R, �R”) and any pair (R3, R4) of two distinct preferences along some line
(R,R”). Indeed, suppose that such a comparison was possible. This would
imply the existence of a pair (R,R”) of distinct preferences such that ( �R, �R”)
QS (R,R

′) and (R3, R4) QS (R′, R”) for some preference R′ ∈ B(R,R”). But
since ( �R, �R”) is maximally dissimilar, one must have ( �R, �R”) Q (R,R”). If
Q satisfies Axiom 5, then one has by Lemma 3 that (R,R”) Q (R,R′) QS
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( �R, �R”). It would then follow from transitivity that (R,R′) QS (R,R”). But
this can only happens by Lemma 3 if R′ = R. But this, given Axioms 3 and
4, contradicts the fact that ( �R, �R”) QS (R,R′) and that ( �R, �R”) is the most
dissimilar pair in R × R.

Since the binary operation ◦L is not defined on the whole set (C ×
C)× (C × C), we denote by D◦L the domain of definition of ◦L. Hence,
D◦L = {(R1, R2, R3, R4) ∈ (C × C× C × C) : ∃ R, R′ and R” ∈ C satisfying
R′ ∈ B(R,R”) such that (R1, R2) QS (R,R′) and (R3, R4) QS (R′, R”)}.

We now impose three conditions on the quaternary relation Q which
ensure that the set of pairs of preferences that can be compared along a
line - in the sense of the binary operation ◦L- is sufficiently rich. The first
condition is existential. It is stated as follows.

Condition 1 For any preferences R1, R2, R3, R4 for which there are pref-
erences R, R′ and R′′ such that R′ ∈ B(R,R′′), (R,R′) QS (R1, R2) and
(R′, R′′) QS (R

3, R4), if (R1, R2) Q (R5, R6) for some preferences R5 and

R6, then there are preferences R, R
′
and R

′′
such that R

′ ∈ B(R,R′′), (R,R′)
QS (R

5, R6) and (R
′
, R

′′
) QS (R

3, R4).

In words, this condition just requires that if two pairs of preferences
(R1, R2) and (R3, R4) can be compared - on their basis of their relative
dissimilarity - along some line, then so can the pairs of preferences (R5, R6)
and (R3, R4) for any pair of preferences (R5, R6) that are not strictly more
dissimilar than (R1, R2).

The next condition is also existential. It is stated as follows.

Condition 2 For any preferences R1, R2, R3, R4 such that (R1, R2) QA
(R3,R4), there must exist preferences R5 and R6 for which there are prefer-

ences R, R
′
and R

′′
such that R

′ ∈ B(R,R′′), (R,R′) QS (R3, R4), (R′, R′′)
QS (R

5, R6) and (R1, R2) Q (R,R
′′
).

In plain English, this condition say that if two preferences (R1, R2) are
strictly more dissimilar than (R3, R4), then one can find a pair of preferences
R5 and R6 that can be compared with (R3, R4) along some line (R,R”)
whose endpoints are not strictly more dissimilar than (R1, R2). In short,
if the preferences (R1, R2) are strictly more dissimilar than (R3, R4), then
there is a pair of preferences R5 and R6 whose dissimilarity, when "added"
to that of (R3, R4) along some segment (R,R

′′
), would still preserve the

greater dissimilarity of (R1, R2) vis-à-vis the end point of the line segment
(R,R”).

Condition 3 For any preferences R1, R2, R3, R4 for which there are pref-
erences R, R′ and R′′ such that R′ ∈ B(R,R′′), (R,R′) QS (R1, R2) and
(R′, R′′) QS (R

3, R4), if R5 and R6 are preferences for which there are pref-
erences �R, �R′ and �R′′ such that �R′ ∈ B( �R, �R′′), ( �R, �R′) QS (R,R′′) and
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( �R′, �R′′) QS (R5, R6), then there must be preferences �R, �R′ and �R′′ and
R, R

′
and R

′′
satisfying �R′ ∈ B( �R, �R′′), R′ ∈ B(R,R′′) such that ( �R, �R′)

QS (R
3, R4), ( �R′, �R′′) QS (R5, R6), (R,R′) QS (R1, R2) and (R′, R′′) QS

( �R, �R′′). Moreover, one must have that ( �R, �R′′) QS (R,R′′).

In words, this condition imposes some consistency in the possibilities
of measuring the dissimilarities of the three pairs of preferences (R1, R2),
(R3, R4) and (R5, R6) sequentially. If it is possible to measure these three
pairs first along the line (R,R′′) (for (R1, R2) and (R3, R4)) and then along
the line ( �R, �R′′) (for (R,R′′) and (R3, R4) and it is also possible to measure
those thee same pairs first along the line ( �R, �R′′) (for (R3, R4) and (R5, R6)),
and then along the line (R,R

′′
) (for (R1, R2) and ( �R, �R′′), then the end points

of the two lines along which the sequential measurement procedure has been
performed (namely ( �R, �R′′) and (R,R′′)) should be equally dissimilar.

As it happens, a preference similarity quaternary relation Q satisfying
these three conditions along with Axioms 1 - 5 can be numerically repre-
sented by a Between-additive distance function that may or may not satisfy
the Triangle inequality. We establish this in the following theorem.

Theorem 3 Let Q be a quaternary relation on X (or a binary relation on
X×X) that satisfies Axioms 1 - 5 and Conditions 1-3. Then, there exists a
between-additive function d : C × C −→ R+ satisfying Properties (i)-(iii) of
Definition 5 (but not necessarily the Triangle inequality) such that, for any
four complete binary relations R1, R2, R3 and R4 on X, one has (R1, R2)
Q (R3, R4)⇐⇒ d(R1, R2) ≥ d(R3, R4).
Proof. The proof rides (heavily) on Theorem 3 at p. 85 of Vol 1 of Krantz,

Luce, Suppes, and Tversky (1971). We first show that the quadruple (C × C, Q,D◦L◦L)
is what these authors call (Definition 3, p. 84) an extensive structure with
no essential maximum. This amount to show that:
(1) Q is an ordering of C × C (which it is!).
(2) If (R1, R2, R3, R4) ∈ D◦L and ((R1, R2) ◦L ( R3, R4), R5, R6) ∈
D◦Lthen (R3, R4, R5, R6) ∈ D◦L , (R1, R2, ( R3, R4) ◦L (R5, R6)) ∈ D◦L
and ((R1, R2) ◦L ( R3, R4), R5, R6) QS (R1, R2, ( R3, R4) ◦L (R5, R6)). This
property is an immediate consequence of Condition 3.
(3) lf (R1, R2, R3, R4) ∈ D◦L and if (R1, R2) Q (R5, R6) for some prefer-

ences R5 and R6, then (R3, R4, R5, R6) ∈ D◦Land (R1, R2) ◦L (R3, R4) Q
(R3, R4) ◦L (R5, R6). The first part of this property is an immediate conse-
quence of Condition 1. The second part of the property results at once from
Segmental consistency applied to the pairs of preferences (R1, R2) ◦L (R3,
R4) and (R3, R4) ◦L (R5, R6).
(4) If R1, R2, R3 and R4 are preferences for which (R1, R2) QA (R

3,R4),
then there must exist preferences R5 and R6 such that (R3, R4, R5, R6) ∈
D◦L and such that (R1, R2) Q ((R3, R4) ◦L (R5, R6)). This is secured by
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Condition 2.
(5) lf (R1, R2, R3, R4) ∈ D◦L , then (R1, R2) ◦L (R3, R4) QA (R1, R2). This
is an immediate consequence of the definition of ◦Land Lemma 3.
(6) If a sequence (R,R′)n (for n = 1, ..., and two preferences R and R′)
can be recursively defined by (R,R′)1 = (R,R′) ◦L (R, R′) and (R,R′)n =
(R,R′)n−1 for any n = 2, ... and is such that there exists a pair of prefer-

ences R and R
′
such that (R,R

′
) Q (R,R′)n for any n in the sequence, then

this sequence should be finite. This (Archimedean) axiom is satisfied here in
our finite setting.
Hence, using Theorem 3 at p. 85 of Vol 1 of Krantz, Luce, Suppes, and
Tversky (1971), we conclude that there exists a function d : C × C →R+
such that (R1, R2) Q (R3, R4)⇐⇒ d(R1, R2) ≥ d(R3, R4) for any four com-
plete binary relations R1, R2, R3 and R4 on X. The function d inherits the
properties of Q and satisfies therefore Properties (i)-(iii) of Definition 5. We
know from the very same Theorem 3 of Krantz, Luce, Suppes, and Tversky
(1971) that d((R1, R2)◦L (R3, R4)) = d(R1, R2)+(R3, R4) for all preferences
(R1, R2, R3, R4) ∈ D◦L . Since any three preferences R1, R2 and R3 such that
R2 ∈ B(R1, R3) are obviously also such that (R1, R2, R2, R3) ∈ D◦

L
, this

also shows that d is between-additive.

While Theorem 3 does not guarantee a numerical representation of a
qualitative notion of preference dissimilarity through a between-additive
distance function satisfying the Triangle inequality, it does guarantees the
between-additivity of the function d. Since the Triangle inequality plays no
role in proving that a preference that is majoritarian with respect to some
preferences profile minimizes the sum of distances between itself and the
preferences in the profile, one can say that a Majoritarian preference mini-
mizes the sum a numerical representation of a qualitative notion of prefer-
ences dissimilarities between itself and any profile of preference under any
notion of preference dissimilarity satisfying Axioms 1 - 5 and Conditions
1-3. This, we believe, adds some generality to the analysis of this paper.

4 Conclusion

This paper has provided what we believe to be a significant generalization
of a relatively little known argument in favour of the "preference of the ma-
jority" for collective decision making. We have shown, in effect, that the
preference of the majority is representative of the collection of preferences
from which it emanates in the sense of minimizing the aggregate pairwise
dissimilarity between those preferences and itself for a reasonably general
notion of such pairwise dissimilarity. This property of the majoritarian rule
was known with respect to the Kemeny notion of distance in the case where
the preference of the majority is transitive. We have shown that the prop-
erty holds true for a larger class of notions of preference dissimilarity, and
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for preferences that do not need to be transitive. We have also identified a
property - between-additivity - of a distance function representing the un-
derlying notion of dissimilarity that is necessary and sufficient for majority
to be representative in this sense sense. We have also provided an unsatis-
factory characterization of an ordinal notion of preference dissimilarity that
can be numerically represented by such a between-additive distance function.
Our characterization is unsatisfactory for at least two reasons. First, it rides
on three unnecessary structural assumptions that may be difficult to verify
in practice. Second, our characterization does not guarantee the possibility
of representing the ordinal notion of preference dissimilarity by a function
satisfying the triangle inequality. While the Triangle inequality plays no role
in the result that majoritarian preferences are the only ones that minimize
a between-additive distance between themselves and the preferences from
which they emanate, it does play a role for showing that between-additivity
of the distance is necessary for being minimized by a majoritarian rule.
We therefore believe that obtaining a more satisfactory characterization of
a notion of preference dissimilarity that is numerically representable by a
between-additive distance is a well-worth objective for future research.
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