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Abstract

This work studies the impact of SNCF strike from April to June 2018 on the demand and
supply of the ridesharing market. Using detailed information available through BlaBlaCar
official API, we are able to construct the the market supply curve as well as observed market
demand curve by transaction records. We find that total transaction payment increased by
37% on an average strike day comparing to an average non-strike day, while market supply
increased by only 9%. We then estimate the elasticity of demand by using the relevant price
ranges on the observed market demand curve, taken into consideration of the influence of
default price on market demand. We conclude that BlaBlaCar generated additional 0.48 -
2 million, or 2.30 - 9.78% of the loss of SNCF, consumer surplus on an average strike day,
showing substantial substitutions between SNCF and BlaBlaCar.

1 Introduction
The International Labour Organization (ILO) has recognized that strike action is a fundamental
right of workers. Yet, some debates are still going on about whether workers of public services
are entitled to the right. According to the ILO, public transportation is not an essential public
service and thus its workers should be entitled to the right to strike. As public transportation
often occupies a major role in facilitating the normal functioning of an economy, the stakes are
so high that labor unions of public transportation are usually very powerful. France experienced
one of the worst SNCF (Sociéte Nationale des Chemins de Fer Français / French National Railway
Company) strike actions in history from April to June 2018. During the three months, two in
every five days a strike was organized, affecting millions of passengers across the nation. When
institutionalized mechanisms fail to work, individuals always respond spontaneously. Ridesharing
platforms, for example, BlaBlaCar, the successful showcase of start-ups in France, are digital mar-
kets for drivers and passengers to match demand and supply. Those platforms are very flexible and
thus should be able to absorb additional demands due to the strike. This work investigates this
substitution relationship and estimates the impacts of the SNCF strike on the demand and supply
of ridesharing. Our result shows that BlaBlaCar absorbed a substantial amount of economic value
during the strike period, pointing to the tendency that services provided by public transportation
could become more and more easily substituted due to the existence of digital ridesharing platforms.

Through BlaBlaCar’s official API, we are able to obtain the details of almost all offers and
bookings during the SNCF strike period. The construction of the market supply curve is thus
straightforward. As we observe all seat offers, taken or not, along with their prices, we can add up
the quantity supplied at each price while assuming that the drivers are willing to accept any offers
above the price they quote on the platform. The construction of the market demand curve requires
a longer discussion. First, we construct the observed market demand curve by assuming that the
maximum willingness to pay coincides with the price a passenger pays. This observed market
demand can be considered as the lower bound of the actual market demand curve. The area under
the curve is exactly the total payment of all transactions combined. Next, we select the section of
the observed market demand curve around the reference price, which is set by BlaBlaCar, while
excluding the reference price to estimate the price elasticity of demand. As the supply condition is
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significantly influenced by BlaBlaCar, most of the offers, and thus bookings, are found at the refer-
ence price, producing a spike in both the observed market demand and the market supply curves.
However, there are still sufficient amounts of offers and bookings slight above and slight below the
reference price, where the influence of the manipulation by BlaBlaCar is smaller. The estimate of
the price elasticity of demand is thus plugged into a constant elasticity demand model to estimate
the actual market demand curve. By comparing the estimated demand curve and the observed
demand curve, we obtain an estimate of consumer surplus generated on the platform of BlaBlaCar.

We find that the impact of strike on the market supply is 9% increase at each price level. The
increase implies that either some SNCF passenger became drivers and offered seats on BlaBlaCar,
or some new drivers came to the platform to take advantage of the strike. On the other hand,
the impact on the observed demand or the payment is roughly 37% increase at each price level.
The result confirms our expectation that supply is much less elastic. By comparing the estimated
market demand curves on strike and non-strike days, the average increase in consumer surplus on
an average strike day generated on the platform of BlaBlaCar is 0.48 - 2 million per day, accounting
to 2.30 - 9.78% of the loss of SNCF per strike day.

The paper continues as follows. Next section is a brief literature review on the dynamics
between traditional markets and digital platforms, followed by sections on the background of the
SNCF strike and on BlaBlaCar. Section 5 discusses the data collection and cleaning, mentioning
potential measurement errors, along with some summary statistics. Section 6 and 7 illustrate the
constructions of the market supply and the observed market demand curves. Section 8 gives an
estimation of the consumer surplus generated by BlaBlaCar and attempts to measure the additional
consumer surplus on an average strike day, which could be interpreted as the value salvaged by
Blablcar. The last section draws the paper to an conclusion.

2 Literature Review
Transportation network disruptions often occur and have great impacts on the routine and well-
being of commuters. Researches on the impact of those interruptions remain city-level case studies,
which raise difficulty in the generalization of evidence (Zhu and Levinson, 2012). Strike in the pub-
lic transportation system is a common category in transportation disruption that forces people to
change their commute behavior. Exel and Rietveld (2001) studied 13 strikes in the public trans-
portation sector and concluded that on average only 10-20% of passengers cancelled their trips
while others actively sought for alternatives.People may eventually stick to the alternative and
form a new habit. A recent paper by Larcom et al. (2017) found that tube/underground strike in
2014 led to lasting changes in commuters’ behaviors as they were forced to discover alternatives
and some learned that the alternatives are more optimized than their initial commuting routes.
Instead of searching for alternatives within the same transportation mode, inter modal switch
is also quite common (see Fearnley et al. (2018) for a review of inter modal elasticities), with
carpooling or ridesharing as an outside option. However, Exel and Rietveld (2001) showed that
despite the evidence on switch to carpooling as a short-term solution, it is often organized either
by the authority (as a policy tool) or spontaneously among acquaintances and employees. It is not
clear if large-scaled share of ride among strangers is used as a resort and how the long-term effect is.

The rise of digital ridesharing and taxi-alike platforms may now serve as a more efficient substi-
tute during strike and other transportation disruptions, as they can match strangers in a large scale
and that they are flexible in adjusting empty seats supplied. What’s more, they offer tremendous
opportunities for quantitative data analysis on the impact of disruptions, which lacks quantitative
evidence. Due to data scale and availability issues, current research on those platforms are con-
centrated on Uber data of American users, topics include drivers’ working behavior under surge
pricing (Chen and Sheldon, 2015), gender pay gap (Cook et al., 2018) and racial and gender dis-
crimination (Ge et al., 2016). Some papers attempted to measure the welfare impact of digital
platforms. Cohen et al. (2016) exploited the discontinuity in the pricing of Uber to estimate the
passenger price elasticity of demand at various points of the demand curve to calculate consumer
surplus. Kim et al. (2018) compared Uber with taxi service in New York city and argue that
Uber’s entry is welfare-enhancing since passengers in broader areas of NYC now have access to
taxi or Uber services. Lam and Liu (2017) also used Uber and Lyft data from API as well as taxi
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data in NYC to estimate the demand and consumer surplus, with a focus on the calculation of
surplus on shortened waiting time. In another research using UberPool data in Chicago, Schwieter-
man and Smith (2018) found 67.6% time reduction using UberPool between neighborhoods and a
$.38/minute saving. On the driver side, Chevalier et al. (2018) showed that Uber’s flexible working
schedule allows drivers to earn twice as much surplus as in non-flexible situations. Evidence sug-
gests that Uber, as a digital platform with flexible on-demand inner-city transportation supply, is
welfare enhancing. It increases ridership as a complement of current public transportation system
(Hall et al., 2018).

However, when there is disruption in the public transportation system, those digital sharing
platforms could also generate extra supply to absorb the excess demand thus act as a substitute
of public transportation. The welfare impact would be even more important since they recover
the welfare loss caused by disruption should their be no substitute and in a much cheaper, grass-
root way. Our paper analyzes rich and unique data extracted from BlaBlaCar during a severe,
long-lasting railway stike in France in 2018 and proved the welfare improving impact. SNCF is a
state-owned monopoly in the French railway system and represents the majority of market of the
long-distance public transportation (Crozet and Guihéry, 2018). The strike has definitely forced
people to search for alternatives. As the largest inter-city level long-distance ridesharing platform
in Europe, BlaBlaCar has been mentioned in several papers of the sharing economy. Specific papers
like Shaheen et al. (2017) investigated the characteristics of passengers and drivers on BlaBlaCar
by survey. Farajallah et al. (2019) web scraped data on BlaBlaCar to study the determinants of
price and demand for the service and found that more experienced drivers tended to set lower
prices. To the best of our knowledge, no economic research paper has been done on the estimation
of the economic value brought by BlaBlaCar.

Our paper fills the gap in several aspects. Firstly, it offers quantitative evidence on the be-
havioral and welfare impact of a severe transportation disruption-SNCF national strike in 2018.
Secondly, it is not limited in one city but estimates the impact of entire France thanks to the
nationwide representation of BlaBlaCar. Thirdly, it focuses on long-distance trips versus trains
rather than daily commute versus subways. Fourthly, it shows the potential of a more-flexible
digital sharing platform as substitute to public transportation.

3 Background: SNCF strike and the opportunity for rideshar-
ing

In late March 2018, the railway workers of SNCF (French National Railway Company) decided to
start an unprecedented strike. The strike started on 3 April and ends on 28 June. The strike was
initiated by the labor union in order to oppose the French government’s reform plan of SNCF. The
plan includes abolishing “railway worker" status that accompanies lots of advantages comparing
to other sectors, privatizing the railway sector to promote competition, closing some unprofitable
regional train lines, and letting SNCF itself, but not the state, pays its debts. As for the railway
workers, abolishing their status would be the most disadvantageous reform. This status was created
in the early 20th century to compensate the difficult working conditions of railway employees at
that time. The bonus included lifelong job guarantee, more holidays than average workers, higher
retirement pension, lower house rent, and free tickets for themselves and even their close relatives
(parents, grandparents,kids and partners).

One special part of the strike is the schedule. The labor unions decided to go on strike every
two days out of five from April to June, no matter if the scheduled strike days happen to be week-
ends or national holidays. As the strike days were announced well before, people could anticipate
the inconvenience and make other plans if possible, though SNCF announced the expected train
schedules of a strike day only in the morning. Appendix A shows the calendar of strike dates in
April, May and June.

The strike became a breaking news in the subsequent few weeks, and impacted on almost
every person living in France. Competitors in the transportation sector found their chance to
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propose solutions and to capture the unserved market. Ridesharing sector was a direct beneficiary.
The transportation authority (Île-de-France Mobilités) even formed partnership with 8 inner-city
ridesharing platforms and set all ridesharing trips inside Île-de-France free of charge on strike
days, including one platform owned by SNCF itself (IDVROOM). For inter-city long-distance trips,
where the impact was expected to be the most severe, BlaBlaCar, the most important long-distance
ridesharing platform in France, would be the natural substitute for lots of passengers.

4 Background information: Introduction of BlaBlaCar
BlaBlaCar is the largest inter-city ridesharing platform in Europe. It is initially called Cov-
oiturage.fr, created by Vincent Caron in 2004. The domain was then bought by Frédéric Mazzella
in 2006, who eventually changed the name into BlaBlaCar.fr in 2013. Besides France, BlaBlaCar
is also operating in 21 other countries, all in Europe except Mexico, Brazil and India.

The business model of BlaBlaCar is based on its online platform. Passengers can filter by
departure place, destination and departure date to search for the most suitable ridesharing driver.
The interface then shows all the filtered trips that drivers have proposed, ranked by an algorithm
taking into account driver experience, departure time, available seats, price, trip departure and
destination matching, etc. Passengers can view a snapshot of each proposed ride, and then decide
which one to click in. Once they enter the individual ride page, they could see more information.
They could even click into driver’s personal page and learn more about the driver. See Appendix
B for more information.

Drivers could not actively search passengers on the platform (there is no “ridesharing request”).
BlaBlaCar neither proposes automatic matching like Uber. Drivers can only screen passengers
after the latter send requests. However, they can post their trips and have the freedom to set
prices. When a driver sets the price level of a trip, the system will propose her a default reference
price, but she can choose to increase or decrease the price level. However, the system also sets the
highest and the lowest possible price. Drivers could not set beyond the range. The final price that
passengers see on the searching page is the price set by drivers plus commission set by BlaBlaCar.
Commission levels climb ladders as trip price increases. Appendix C shows how BlaBlaCar sets
trip commission.

5 Data

5.1 Data Collection and cleaning
Our data is comprised of three sources: BlaBlaCar’s API, BlaBlaCar’s website and SNCF’s press
documents. All information collected is publicly available. However, BlaBlaCar’s API will only
keep historical data for a short period, so that the data we have for this paper could no longer
be found. BlaBlaCar’s open API offers the essential part of the dataset. 1 It contains almost all
the information of a trip, which could already be seen by everyone, registered to the website or
not. Crucial variables are departure and arrival cities, departure date and time, price proposed
by driver, commission level, price seen by the passenger, total seats and booked seats. However,
no personal information such as driver’s name or age is available on API, even though they can
also be seen on the page of the trip. For the purpose of this paper, we consider each driver and
passenger as independent – though some of them participated several times in the dataset – and
we do not need personal information for the analysis.

5.1.1 Protocol of API scraping and choice of routes

The scraping started on 1 April, 2018, two weeks after SNCF’s announcement of strike and two
days before the strike starts (3 April). Scraping ends on 3 August, 2018. We extended the scraping
period one month after the end of the strike because a calm period could serve well as a control
group. For the sake of conceiving the protocol and programming, we could not start scraping right
after the announcement of strike. As the API keeps some historical trips, we could still include

1https://dev.BlaBlaCar.com/
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some pre-strike observations in our data base, from 20 March till 31 March. However, once we
pass the departure date of the trip for one or two days, only the unbooked trips will remain on
the API. Our pre-strike observations are biased because we can no longer know the information of
trips that are partially or fully booked.

From 1 April to 3 August, we run the scraping program each day at the end of the working
day, typically from 18:00 to 19:00. The choice of scraping frequency is a balance of accuracy and
convenience. Scraping more than once per day will include more observations and track changes
more precisely, but will soon explode the size of data and exceed the daily upper limit of API
queries. Scraping once several days may lose track on important changes that occur on one specific
day and confound the effect with idiosyncrasies of the day such as strike or non-strike, weekday or
weekend. Since most of the trips depart before 19 p.m., scraping at the end of the day increases
the chance of documenting the end status of the trip after its departure.

We also limited our daily scraping to a reasonable level, not only because that it is nearly
impossible to exhaust all the trips on the website, but also because that too large dataset will cost
too much time spent on scraping each day and will slow down the data analysis process.2 Following
the practice of ?, we also pre-defined routes that are representative and are the most likely to be
impacted by the railway strike.

In the end, 41 round trips (82 routes) are selected. These routes include major French cities
(and their suburb areas) and some second-tier cities (and their suburb areas), as shown by Figure
1.3 We also take into consideration the balance of geographic representation so that each part of
the hexagon has represented cities. Routes can be considered of three categories. The first one is
between two major cities. We picked seven cities as major cities: Paris, Lyon, Marseille, Bordeaux,
Toulouse, Nantes, Strasbourg, balancing the size of the city and the geographic representation. The
second category is between a major city to a second-tier city close to that major city. The third
category is between two second-tier cities that are close to each other.4 Appendix D lists the 82
routes and the categories they belong to.

After limiting routes, we limited the length of tracking of trips. It is interesting to start tracking
trips several days before its departure in order to learn how booking changes. However, tracing
back too many days before departure will also increase burden of scraping for little efficiency. In
the end, we decided to trace 14 days beforehand. At scraping date n, we scraped all trips that
depart from day n-1 to day n+14. If a trip was published and had bookings more than 14 days
before departure date, we will lose track on the first booking date, but such cases are very rare.
Graph 2 shows that most trips are published within 3 days before departure. The reason to scrap
trips that just finished one day before is that some of those trips may not have been wiped out
from API yet, and we might better catch the latest booking status.5

5.1.2 Supplementary information from BlaBlaCar and SNCF

Apart from the information available from API, we completed our dataset with supplementary
information from BlaBlaCar and SNCF. Even though drivers can propose price themselves, they
are not totally free to choose. For each route, when drivers enter the page of price settling, a

2The way of scraping via API is by sending queries that contain selection criteria. In the case of BlaBlaCar, we
can set selection criteria on various variables like departure and arrival cities, date of departure, etc. By setting a
selection criterion, we are restricting ourselves to a subset of the entire data. Also, we are not scraping in permanence.
There must be some trips that have appeared but then disappeared in between two scraping sessions.

3In 2018, the ten largest cities (including suburb areas) in France are : Paris, Lyon, Marseille-Aix-en-Provence,
Toulouse, Bordeaux, Lille, Nice, Nantes, Strasbourg and Rennes. They are all included in our search.

4We do not include trips of two cities that are far from each other. For example, we scrap trips from Lille to
Paris and from Paris to Lyon, but we will not scrap trips from Lille to Lyon even though Lille and Lyon are both in
the list. A trip from Lille to Lyon will definitely pass by Paris, and drivers may well add a correspondence in Paris,
which may cause repeated scraping if we scrap Lille-Lyon. However, our scraping logic will split a complete trip of
Lille-Paris-Lyon into two observations: Lille-Paris and Paris-Lyon. Since BlaBlaCar asks drivers independent price
for each subsection of the entire trip, we can well treat them as two independent observations.

5The circumstances at which API wipes out trips are not very clear to us. Based on observation of data, we
made some inferences, which will be presented in details in the data cleaning section.
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Figure 1: The map shows the volumes of records arriving to the city by the size of circle. Paris
is the most popular destination while Lyon and Toulouse follow.

Figure 2: Most of the passengers booked their trips on the day of departure or one day before
departure.
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default price will be suggested to them.6 There are also upper and lower bound price caps which
prevent drivers from charging too high or too low prices. We collected the default price as well
as the upper and lower price caps of each selected route by simulating driver’s trip publication
procedure using a driver’s account (See Appendix D).

The final piece of the information is the strike rate computed and announced by SNCF. For
most strike days, SNCF published a press document with overall strike rate. 7 We collected all the
available strike rates and fill the missing values with the average of the strike date before and after.
For non-strike dates, the strike rate was zero. The schedule of strike dates was well communicated
before the strike started. We created an indicator of strike for trips departed on strike days.

5.1.3 Data cleaning and de-bias

At the end of the scraping process, we have an unbalanced panel data of trips departing from the
end of March to the beginning of August 2018 which belong to the pre-defined 82 routes. The data
is panel because a trip may have several observations up to 15 days before its departure date. The
data is also imbalanced because a trip can no longer be traced once its departure date passes or
that it be wiped out from the API. The fact of being able to trace back up to 15 days before de-
parture allows us to observe the booking evolution, which is essential to demand curve estimation
and welfare analysis. Changes in other important variables such as price level and total proposed
seats can also be traced.8 Of course, there could be no change in any variable at all during several
days or for all observations of the trip.

For the convenience of analysis, we need to keep only one observation of each trip and create
additional variables for the changes. In stead of keeping 15 observations of trip K that has 3
bookings happened in date A, B and C (we can know that by observing at which dates the seats
left variable changed), it would be enough to only keep its last observation and indicate the total
booked seats and the dates of booking. The same logic applied to changes in other variables. We
firstly cleaned our dataset in this way to only keep one observation of each trip and add variable
change indicators. This helped us significantly reduce the size of data while keep important infor-
mation.

However, the data scraped from API is biased towards present final status of trips, even if the
information scraped is correct. The main reason of bias is that the API does not keep trips forever.
Several reasons can cause the trip to disappear or to be wiped our from API. If a trip is cancelled
by the driver, it will no longer be found the next scraping day, even if the departure day has not
come yet.9 If the trip has been fully booked, there is also chance that the website stops showing
the trip to potential passengers and that the trip is also wiped out from API. If the departure date
of the trip has passed, the trip may also not be found on API the day after.10

This creates two biases. Firstly, we do not know if the trip disappears because of driver can-
cellation (no demand nor supply) or because of full booking (full demand and supply). Secondly,
we are not sure if the booking number in the last observation of the trip is the true last status.
That is to say, if there is no change in booking between the last scraping before departure and the
wipe off of the trip from API. We scrap trips once a day which may allow non-captured changes

6On the website, if a driver wants to raise price up from the default level, she will be warned that most of the
trips are cheaper and that there are more chances to stick to the default price level to maximize the chance of being
booked. If she still want to increase the price level, the color of the price will switch from green to orange and
eventually to red. Setting price lower than default level will not trigger warning message or change of color. On the
mobile app, the color of the price never changes, but drivers do receive the warning and do need to double confirm
before being able to modify the price level.

7Information is extracted here : https://www.sncf.com/fr/groupe-sncf/newsroom/communique-de-presse
8In fact, before a booking happens, drivers are free to modify any information of the trip, including price

level, available seat number, trip description, correspondence city, etc. Once a booking occurs, drivers can
no longer modify price unless the booked seat is cancelled. See https://www.BlaBlaCar.fr/faq/question/
comment-modifier-mon-annonce-avant-et-apres-une-reservation for more information on trip modification.

9Drivers can cancel the trip at any time even if the trip has been booked. No penalty is applied except that
drivers who often cancel at the last minute may not be able to publish new trips.

10Trip cancellation will lead to immediate wipe out from API, but fully booked or outdated trips could either be
wiped out within one day, or keep staying on the API for a few days. We have not figured out how exactly the
length kept is decided, which also adds difficulty in backward inferring the reason of wipe out.
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between two scrapings.11 Even though we could not be sure of the final status of each trip, we
could nevertheless apply some rules to minimize the bias. Three scenarios may happen.

Scenario 1: At scraping date n+1, we still observe trips whose departure date is n. This is the
ideal situation. We can take the booking data of the last scraping date as the final booking status
of the trip.

Scenario 2: The last time that a trip is scraped is in the same day as its departure date. This
situation is less ideal but still gives us confidence on the data trustworthy of the last scraping.
Since scraping happens at around 19 p.m. and lasts about one hour each day, trips departing
before could all be seen finished when scraping happens. Thus, we can take the API data as true
last booking status. For trips departing after 20 p.m. but somehow can no longer be found the
day afterwards, we consider them be fully booked at the last minute and then be wiped out from
the API. We then modify the demand amount in our dataset. 12

Scenario 3: The last time that a trip is scraped is before its departure date. This is a most
complex situation. Whichever rules applied, there must still be bias. We here apply a simple,
straightforward but still efficient rule based on two rationales: Firstly, the earlier the trip dis-
appears from API comparing to the departure date, the more likely that the driver cancels it.
Secondly, the fewer seats are booked before the trip disappears from API, the more likely that the
driver cancels it. It is especially likely the case when the trip disappears with no seat booked. Our
rules of reestimating seats supplied and booked are as follows:

If a trip has 4 and more unbooked seats before being wiped out from API, even if it is only one
day before departure, we assume that the driver has cancelled it. If a trip has 3 unbooked seats
before being wiped out and only 3 seats are supplied, we also assume that it has been cancelled.
However, if total supplied seats are greater than 3, which means that the trip has had booking
before being wiped out, we assume that it has been fully booked. If a trip has only 1 or 2 unbooked
seats before being wiped out, we consider it as fully booked because it is relatively easy to have
one or two people booking at the last minute.

5.2 Summary Statistics
Our dataset contains (almost) all trips information of 82 routes from the 1st of April 2018 to the
31st of July 2018. As illustrated by Figure 1, we cover all big cities in France and some intermediate
and small cities. Paris is most popular destination, followed by Lyon and Toulouse. Figure 3 shows
the total amount of trip records per route.13 The busiest route is Nantes-Rennes, reaching almost
32,000 in the four-month period. Figure 4 shows the trip records of Paris-Lyon over the period and
strike days are highlighted in yellow. We find both weekday effects and month effects. Roughly
speaking, we find the amount fluctuating a lot in the beginning period of the strike (early April
to mid May), and becomes stable in the second half of the period (mid May to late June). To
better compare the difference between strike and non-strike days, we compute the average number
of trips, as shown in Table 1. On average, 8,711 and 8,310 trips were offered on BlaBlaCar on a
strike day and a non-strike day respectively, an increase of 4.8%.

Table 1: Average Number of Trips per Day
Mean SD Min Max

Non-Strike 8310 3112 4745 16728
Strike 8711 3536 4935 17804

11There may even be trips that are published, fully booked and then wiped out between two scraping dates, that
we are even not able to scrap them once. They are considered as have never existed which will make our estimation
of supply and demand downward biased. However, we ignore this bias in this paper because we have no way to
verify its scope nor to correct it.

12There is also possibility that the driver cancelled the trip in the last minute, but since it should be rare and not
encouraged by the platform, we ignore this possibility here.

13Only half of the pairs, i.e. 41 routes, are shown.
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Figure 3: Routes are ranking according to the total trip records. Nantes-Rennes ranks the first,
followed by Montpelier-Toulouse and Bordeaux-Toulouse. The least busiest routes are Cannes-
Nice. The average amount of trip records is 12,465.

Figure 4: The numbers of trip records each day from 1 April to 31 July are shown along with
highight of strike days in yellow. The busiest day, 4 May, registered 593 trips.
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6 Effects on Supply
One of the distinctive advantage of the dataset is the abundance of details. We observe the number
of seats offered to the market by drivers along with prices. Each observation is thus a revelation of
a driver’s willingness to offer. Note that the pair of price and quantity is not necessary a transac-
tion while most of the conventional datasets contain only transactions. But we do not observe the
willingness to pay of a driver over a range of prices. To complete the drawing of the supply curve,
we make one essential assumption. Drivers are assumed to be willing to offer the same amount
of seats at any price higher than the observed price but not lower. An individual driver during a
short period of time can only offer a fixed amount of seats and thus an individual supply curve is
perfectly inelastic over a large range of prices. If we consider that drivers have no outside option
(no opportunity cost) and they have to drive in any case, an individual supply curve is a vertical
line beginning from the price set by the driver, as shown in Figure 5.

The market aggregate supply is the horizontal summation of individual supply curves, as illus-
trated in a simplified way in Figure 6. We add up all the individual supply curves for each route
on a daily basis. Although the services or the seats may not be directly competing with each other
because passengers may prefer departing at certain time or taking a ride by a driver of certain
gender, we ignore these minor details and define the market supply curve within the 24 hours of a
calendar day. An example is shown in Figure 7. We observe that there is always a spike of supply
at the reference price. Each route has a default price, which is recommended by BlaBlaCar, but
drivers can always adjust the price within a range of prices. For example, the reference price for
Paris-Lyon is 30e. We can reasonably assume that some drivers quoting 30e in fact would have
accepted a price less than 30e. That implies that the increase in quantity supplied below 30e
would have been less sharp and the actual supply curve would lie to right of the supply curve we
drawn for the section below the reference price.

Our next step is to study the impact of the SNCF strike on the supply environment. From what
we observe, the relationship between price and quantity supplied is cubic. The cubic relationship
remains in log-log space. As we model the supply and estimate an average estimate of the impact
of strike, we include into the regression the cubic, the quadratic and also the log of price at level.
Precisely, we estimate the following model:

ln(Qsit) = α+ β1ln(Pit) + β2ln(Pit)
2 + β3ln(Pit)

3 + β4Striket +Xγ + εit (1)

where Qsit is the quantity supplied, Pit is the price of route i and day t, and X refers to the
matrix of control variables, that includes route fixed effects, month fixed effects, and weekday fixed
effects. The error term εit is assumed to be randomly distributed with mean zero. Results are
shown in Table 2. Column (1) is the estimation result of Equation 1. The coefficient of the strike
day indicator is positive and significant. On average, a strike day experienced 9.4% increase in
supply. In Column (2), we interact price (level, quadratic and cubic) with routes. The magnitude
falls to 8.6%. Column (3) replaces the strike day indicator by the overall strike rate published by
SNCF, while keeping all interaction terms added in Column (2). A higher strike rate means that
more staff went on strike during a given day. A increase of strike rate by 1 percentage point is cor-
related with 0.44% increase in supply. The average strike rate during the period is approximately
20%, which implies on an average strike day the impact is 8.9%.

There are at least two reasons behind the increase in supply. First, affected passengers of SNCF
might dive their own cars and also offer their empty seats on BlaBlaCar. Second, some drivers
wanted to take advantage of the strike to make some extra money. The impact is however relatively
small compare to the impact on demand, as we shall see in next section.
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Table 2: BlaBlaCar Supply during SNCF Strike
(1) (2) (3)

Strike Day 0.0938∗∗∗ 0.0857∗∗∗
(0.0107) (0.0080)

Strike Day (overall) 0.4425∗∗∗
(0.0399)

Route FE Yes Yes Yes
Weekday FE Yes Yes Yes
Month FE Yes Yes Yes
N 73233 73233 73233
R2 0.793 0.886 0.886
No. of Groups 82 82 82
Robust standard errors in parentheses
∗ p < .1, ∗∗ p < .05, ∗∗∗ p < .01

Price

Quantity Supplied

S

Q

P

Figure 5: An individual supply curve is assumed to be a vertical line at Q beginning at the observed
price explicitly chosen by the driver P .
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Price

Quantity Supplied

Sa

Qa

Pa

Sb

Pb

Qb

SMarket=Sa+Sb

Qa+Qb

Figure 6: This graph illustrates how we horizontally sum up individual supply curves. Individual
A(B) offers Qa (Qb) amount of seats. Between Pa and Pb, only individual B is willing offer and
thus the market supply curve is the same as the individual supply curve of individual B. Beyond
Pa, the market supply is Qa+Qb. Therefore, the market supply curve is represented by the dashed
red line in this two-individual case.

7 Effects on Observed Demand
The construction of the market demand curve is less straightforward. We only observe transactions
in the dataset but not the willingness to pay at all possible prices. For example, we cannot observe
the willingness to pay when someone has not found a suitable ride. We first try to obtain the
lower bound of the actual market demand by assuming that the maximum willingness to pay is
equal to the price a passenger pay. The actual demand curve must lie on the right of the observed
demand curve because passengers are very likely be willing to pay more than the price they pay.
Moreover, we are unable to observe users’ willingness to pay when they are unable to find a ride
at certain prices. For simplicity, let us call the constructed curve below the observed demand curve.

Passengers have unit demand. Even if the price is zero, one does not need to transport two of
oneself. By assuming that individuals would have booked the same trip at lower prices but not
higher, an individual demand curve is thus a vertical line beginning at zero price and ending at
the price the passenger paid. The aggregate observed market demand is the horizontal summation
of all the individual demand curves.

We are interested in the impact of strike on the observed market demand. As the relationship
between price and quantity demanded is also cubic, we estimate the following equation:

ln(Qdit) = α+ β1ln(Pit) + β2ln(Pit)
2 + β3ln(Pit)

3 + β4Striket +Xγ + εit (2)

Results are shown in Table 3. Column (1) reports the estimation of the baseline result. On
average, observed market demand, or total payment, increased by 36.5% at each price level on a
strike day. Column (2) reports the result of estimation that includes interaction terms between
price (level, quadratic and cubic) and routes. The magnitude is almost the same, while R-squared
improves. We then replace the strike indicator by the overall strike rate, as shown in Column
(3). On an average day having 20% staff on strike, the impact on the observed market demand
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Figure 7: The market supply of the route Paris-Lyon on 9 May 2018 is depicted.
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Figure 8: The observed market demand of the route Paris-Lyon on 9 May 2018 is depicted. As
we do not observe any transactions at a price lower than 19e, we complete the observed market
demand curve by extending the curve downward vertically to zero. The actual demand curve
should lie to the right of the constructed demand curve.
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is roughly 37.3%. The increase in the observed demand due to the strike is substantial, while the
supply is relatively inelastic.

Table 3: BlaBlaCar Demand during SNCF Strike
(1) (2) (3)

Strike Day 0.3652∗∗∗ 0.3661∗∗∗
(0.0110) (0.0076)

Strike Rate (overall) 1.8670∗∗∗
(0.0377)

Route FE Yes Yes Yes
Weekday FE Yes Yes Yes
Month FE Yes Yes Yes
N 73249 73249 73249
R2 0.735 0.876 0.877
No. of Groups 82 82 82
Robust Standard errors in parentheses
∗ p < .1, ∗∗ p < .05, ∗∗∗ p < .01

8 Welfare Analysis

8.1 Increase in Transaction Value
This section attempts to estimate the welfare impact due to BlaBlaCar on strike days. Perhaps
the sentence is misleading. SNCF strike certainly led to some social welfare loss, while BlaBlaCar
as a substitute salvaged some economic value. Nevertheless, we do not expect the net gain to
be positive. As we are unable to obtain detailed information of train schedules of SNCF during
the strike period, we are unable to measure the welfare loss due to the strike. However, as we
have all transaction information of BlaBlaCar for the 82 routes, we can compare the payments
between an average strike day and an average non-strike day and thus obtain an estimate of value
transferred from passengers to drivers during the strike period, which is also a relevant indicator
of how BlaBlaCar contributed to or alleviated the transportation chaos during the strike period.

We first compute the areas below each observed market demand curve of a route of a day,
which are taken as the dependent variable to be explained by strike day indicator. The logic is
illustrated by Figure 9. Imagine that Dnon−strike and Dstrike are the observed market demand
curves for a particular route on an average non-strike day and an average strike day respectively.
As drivers can only set a price within a range set by BlaBlaCar and we construct the observed
market demand curve by transaction information, we can only estimate the shape of the curve
between Pupper and Plower but not beyond them. The difference in the area below the curve, in
this case a positive change, is the additional payment from passengers to drivers on the platform
of BlaBlaCar on an average strike day.

Precisely, we estimate the following model:

ln(Vit) = a+ b1Striket + Zc+ eit (3)

where Vit is the area under the observed market demand curve of route i on day t, Striket is the
strike day indicator, matrix Z contains control variables including a linear time trend, route fixed
effects, month fixed effects, and weekday fixed effects. The error term eit is randomly distributed
with zero mean. We are interested in the coefficient of Striket, which is interpreted as the impact
of strike on the observed market demand on an average strike day. Results are shown in Table
5. Column (1) reports the baseline result where all routes share the same time trend. A strike
day saw on average an increase of payment by 31.3% at each price level. Column (2) replaces
the common time trend by route-specific trends but the estimate is almost identical. Column (3)
replaces the strike day indicator by overall strike rate. On an average strike day with 20% staff on
strike, the impact is 32%. The result is robust and significant. From April to July 2018, for the
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82 routes we have selected, average total payments exchanged on the platform of BlaBlaCar on an
average non-strike day is approximately 2.2e million. An increase of 30% is equivalent to 0.70e
million. A summary of the estimates of total transaction value is shown in Table 4.

Table 4: Summary of Estimates of Total Transaction Value in millions euro (April-July)
Total (April-July) Average per day

Non-Strike Days 188.4 2.19
Strike Days 103.0 2.86

The press release by SNCF states that "At the end of June, SNCF Group’s revenues stood at
16.6e billion, down 3.3%, with TGV high-speed rail traffic down 3.8%. Without the strike, revenue
would have risen by around 4%." In other words, the strike effect on revenue is 1.21e billion for
37 days. On average, the loss is 3.27e million per day. Let this amount be the economic loss due
to the strike per day. BlaBlaCar recovered 21.4% of the loss, if we assume that the opportunity
costs of drivers are zero.14 Taking loss of revenue as the reference may be misleading as a strike
does not simply imply tickets to be refunded or revenue unearned. SNCF spent extra money to
provide assistance, chartering coach services, and so on. SNCF claims that roughly 21e million
was lost each strike day.

Price

Quantity Demanded

Pupper

Plower

Dnon−strike

Dstrike

Additional Value

Figure 9: Observed market demand curves of an average strike day and an average non-strike day
are depicted by Dstrike and Dnon−strike respectively. The difference in the area below the observed
market demand curve is the additional value generated by BlaBlaCar during an average strike day
compared to an average non-strike day.

8.2 Effect on Consumer Surplus
In the analysis above, we assume that passengers’ maximum willingness to pay coincides with the
prices they pay. Using total payment as a measure of economic contribution may not be satisfac-
tory because we have not considered costs on the supply side. Another widely accepted measure is

14https://www.sncf.com/sncv1/ressources/reports/pr_sncf_group_h1_2018_results_07.27.2018.pdf .Re-
trieved on 13 January 2019.
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Table 5: Additional Payments Transacted on BlaBlaCar during SNCF Strike
(1) (2) (3)

Strike Day 0.3128∗∗∗ 0.3122∗∗∗
(0.0231) (0.0230)

Strike Rate (overall) 1.5995∗∗∗
(0.1202)

Linear Time Trend Yes Route-specific Route-specific
Route FE Yes Yes Yes
Weekday FE Yes Yes Yes
Month FE Yes Yes Yes
N 9966 9966 9966
R2 0.400 0.426 0.429
No. of Routes 82 82 82
Robust standard errors in parentheses
∗ p < .1, ∗∗ p < .05, ∗∗∗ p < .01

consumer surplus, which is the distance between the maximum willingness to pay and the actual
payment by consumers at each quantity. If we assume that all the payments simply cover the costs
of the trips, the increase in consumer surplus is also the additional social welfare to the economy.

Standard approach to measure consumer surplus relies on equilibrium analysis. By assuming
that all transactions observed are equilibrium intersections between demand and supply, researchers
estimate price elasticity of demand using different identification strategies. Farronato and Fradkin
(2018), using data on Airbnb, computed the average price of bookings and took it as the market
clearing (equilibrium) price of each day to estimate price elasticity. The market demand curve is
thus built upon average price of a day and total bookings of a day. However, we believe that with
digital platform data we could avoid appealing to aggregation of information. Structural models
rely on equilibrium, which is often assumed to coincide with an observed price-quantity pair. It is
reasonable as we may only observe at a time the price set by the seller and the total transaction
amount of the product at the price in most of the brick-and-mortar markets, and, therefore, the
resulting demand curve is a collection of points of different observation periods. The construction
of the demand curve is thus not immune to endogeneity bias as equilibrium price and quantity
transacted are the result of interactions between demand and supply. Traditional econometrics of
demand estimation has been built around this implicit assumption.

Cohen et al. (2016) stepped back from traditional approach and relied on discontinuity to pro-
duce some randomness around a price. As they observed acceptance and rejection of price offers
by Uber users, they could estimate the price elasticity of demand around those discontinuities and
built the market demand curve. Their result is immune to many challenges since they also observe
rejections of offers. Although BlaBlaCar does not have discontinuities due to price surge as Uber,
our approach, to a certain extent, is similar to the one by Cohen et al. (2016). We do not appeal
to equilibrium analysis, and construct quantities demanded and supplied at each available price by
exploiting the richness of the platform data. We then establish the daily observed market demand
curve and the market supply curve. To arrive to an estimate of the consumer surplus, the basic
assumption made is that the observed demand curve gives us information to obtain the true price
elasticity, together with a conservative estimate of the intercept of the market demand curve.

As we observe all the payments but not the maximum willingness to pay, we need to make
assumptions before reaching any conclusion. Assume a constant price elasticity demand curve, we
write the demand function as follows:

Qitp = Kitp
η (4)

where Qitp is the quantity demanded at price level p of route i on day t, Kit capture all other
variables except Qitp and η is the price elasticity of demand. If Kit is to be shown on a usual price-
quantity dimension, it is the x-intercept of the demand curve. Although the constant-elasticity
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assumption tends to oversimplify the real world, the advantage is that once we obtain a reliable
estimate of the price elasticity of demand we are able to draw the whole demand curve. The
consumer surplus is thus the difference between the area below the observed demand curve we
constructed in Section 7, which is exactly the total payment of all transactions, and the area below
the estimated demand curve of Equation 4.

8.2.1 Optimistic Estimation

As observed transactions are affected by the supply condition that is manipulated by the rec-
ommended price, we observe spikes at the recommended price for both the demand and supply
curves. If we estimate the price elasticity around the reference price using the actual transaction
data, we will find a drastic change due to the spike, contrasting to our assumption. At prices
slightly above and below the reference price, for example, two euros above and two euros below,
there are reasonable amounts of offers and transactions available where the estimate of the elastic-
ity is more reliable. We thus exclude all observations at the reference price and those too far from
the reference price. Precisely, we only include observations within the ranges [Pref + 2, Pref ) and
(Pref , Pref − 2], and estimate the log of Equation 4 to obtain a single estimate of the elasticity
for all routes while controlling for weekday, month and route fixed effects, along with a linear time
trend and an indicator of the section of the demand curve (above or below the reference price).
This method will be referred as Method A below. Results are shown in Table 6.

Table 6: Elasticity Estimation
(1) (2) (3)

η -2.8428∗∗∗ -2.7735∗∗∗ -2.7740∗∗∗
(0.0857) (0.0853) (0.0854)

Strike Day 0.3520∗∗∗ 0.3520∗∗∗
(0.0132) (0.0131)

Strike Rate (overall) 1.7689∗∗∗
(0.0642)

Linear Time Trend Yes Route-specific Route-specific
Route FE Yes Yes Yes
Weekday FE Yes Yes Yes
Month FE Yes Yes Yes
N 32870 32870 32870
R2 0.797 0.801 0.802
No. of Routes 82 82 82
Standard errors in parentheses
∗ p < .1, ∗∗ p < .05, ∗∗∗ p < .01

The first column models a common linear time trend for all routes. The estimate of the elas-
ticity η is -2.84, meaning that one percent increase in price leads to a fall of quantity demanded
by 2.84%. Strike day indicator is associated with a positive coefficient, as expected, meaning that
the market demand of an average strike day lies to the right of the market demand of an average
non-strike day. Column (2) instead assumes route-specific time trends, but the estimates are sim-
ilar. Column (3) replace the indicator by the overall strike rate. Again the estimates are robust.
To compute the consumer surplus, we take η as -2.7735.

Regression of Equation 4 will give us an estimate of the elasticity, but we need to transform
the equation for us to easily compute the consumer surplus as the following:

p =
(Qit
Kit

) 1
η (5)

Consumer surplus is computed as follows:
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Cit =

∫ Qit

0

(Qit
Kit

) 1
η dQ− Vit (6)

where Qitp is the max quantity demanded at the lower bound price, and Vit is the value below
the observed demand curve we constructed in Section 4. Equation 7 can be transformed as follows:

Cit =
1

K
1
η

it

1
1
η + 1

Q
1
η+1

it − Vit (7)

By replacing Kit and η by therir corresponding estimates K̂it and η̂, we obtain an estimate
of the consumer surplus for each route on each day. A graphical illustration is given in Figure
10. What left to determine is the intercept term 1/K

1
η
it , i.e. the price at which the first quantity

demanded would have been conceived. We proceed as the following. We take the predictions of
Kit obtained from the regression of the log of Equation 4 as a baseline K̂it. Next, we multiply
the baseline 1/K̂

1
η
it by a factor to force the consumer surplus of any route on any day at least zero

because negative consumer surplus is inconceivable.15 The factor is found to be 3.225. We then
add up all estimated consumer surplus and summarize in Table 7. The difference in the estimated
consumer surplus between strike and non-strike days can be interpreted as the additional welfare
gain on the consumer side due to BlaBlaCar. Table 8 reports the estimations of the impact of
strike on consumer surplus. Specifications remain the same as those in Table 5. We find that on
average a day of strike led to an increase in consumer surplus by 35%, which is robust across three
specifications. The result again suggests that there were substantial amount of substitutions hap-
pened during the strike period. One could interpret the result as BlaBlaCar salvaged on average 2
million per strike day.16 To have a perspective of the size of the effect, we compared the estimate
to the loss stated by SNCF, which is 21 million per strike day, and it is roughly 9.78% of the loss.

15As an indicator of whether the price is above or below the reference price is included in the regression to refrain
the slope from being influenced by the spike at the reference price, we actually have two K̂it for each route-day pair.
In the following analysis we take the K̂it associated with the prices below the demand curve.

165.87 X 0.35 = 2.0545
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Figure 10: This graph illustrates the computation of the consumer surplus. The area under the
observed market demand curve (D1) is exactly the total payment of all bookings. By gathering
observations around the reference price while excluding the reference price, we estimate the elastic-
ity, which is then projected to a hypothetical market demand curve (D2) given an approximation
of K. The area between two curves is the consumer surplus.

Table 7: Summary of Estimates of Consumer Surplus in millions euro (April-July)
Total (April-July) Average per day CS to Transactions

Non-Strike Days 504.8 5.87 3.46
Strike Days 282.8 7.86 3.45

Table 8: Additional Consumer Surplus due to BlaBlaCar during SNCF Strike
(1) (2) (3)

Strike Day 0.3467∗∗∗ 0.3462∗∗∗
(0.0224) (0.0223)

Strike Rate (overall) 1.6354∗∗∗
(0.1258)

Linear Time Trend Yes Route-specific Route-specific
Route FE Yes Yes Yes
Weekday FE Yes Yes Yes
Month FE Yes Yes Yes
N 9954 9954 9954
R2 0.511 0.556 0.556
No. of Routes 82 82 82
Robust standard errors in parentheses
∗ p < .1, ∗∗ p < .05, ∗∗∗ p < .01

We also compute the ratio of consumer surplus to total transaction value, shown in Table 7, the
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ratio is roughly 3.45-3.46 on an average day, meaning that on average a euro spent on BlaBlaCar
generates 3.45-3.46e economic value.

8.2.2 Conservative Estimation

The optimitis estimation requires that the sections of the observed market demand around the
reference price while excluding the reference price are representative. But it may overestimate the
price elasticity of demand. The sections of the observed market demand curve are very likely to be
less elastic than the true ones because the supply condition, which is heavily biased towards the
reference price due to the manipulation of BlaBlaCar, may suppress the quantities demanded that
we can observe. We amend this problem as the following. First, we estimate one single estimate
of the elasticity by linking observations of the two sections while still keeping the reference price
out, referred as Method B. It is expected to produce a more elastic estimate, as Figure 11 shows.
Second, we include also the information of supply in the regression while utilizing also observations
at the reference price. Including the quantity supplied helps alleviate the impact of the manipula-
tion at each price level. This method will be referred as Method C. For example, the spike of the
supply captures the spike of the demand and we could be more confident to believe that the price
elasticity of the actual market demand curve is a constant, given that the spike is well controlled.
Third, we amend Method C by including an interaction term between supply and an indicator of
observations equal or below the reference price, referred as Method D. Finally, we amend Method
D by removing all observations at the reference price, referred as Method E. Results are shown
in Table 9. Column (1) is a reproduction of the specification while excluding the section dummy.
As expected, the estimate of elasticity is larger, implying a less step market demand curve and a
lower consumer surplus. Column (2) includes the log of quantity supplied at the corresponding
price level while including also the observations at the reference prices. The estimate is even larger
and the coefficient of supply is highly significant. We believe that the coefficient is too large as the
spike of demand seems not well modeled by an obviously wrong linear relationship between the
log of supply and the log of demand. Besides, the impact of the supply on the demand depends
on whether the corresponding price level is above or below the reference price. On top of the
previous column, Column (3) includes an interaction term between the indicator of section below
the reference price and the log of supply. The interaction term is highly significant, reflecting the
drag by the reference price at the section of the demand at prices equal to or below the reference
price. Column (4) removes all observations at the reference prices and re-estimate the model of
Column (3) because the existence of the observations at the spike is likely to produce a very flat
market demand curve despite the control of the supply condition. The estimate of elasticity seems
to fall within a more reasonable range. The estimate is robust, ranging from -6.76 to -6.69, sub-
ject to changes of the specification of the model including replacing the common time trend by
route-specific time trends and replacing the strike indicator by strike rate, though the details are
not shown in the paper.
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Table 9: Price Elasticity of Demand by Conservative Approaches
(1) (2) (3) (4)

Method B Method C Method D Method E
η -7.6502∗∗∗ -11.8650∗∗∗ -7.6464∗∗∗ -6.7607∗∗∗

(0.0562) (0.1027) (0.1076) (0.1198)

Strike Day 0.3527∗∗∗ 0.2852∗∗∗ 0.3062∗∗∗ 0.3140∗∗∗
(0.0148) (0.0118) (0.0100) (0.0116)

ln Supply 0.4203∗∗∗ 0.1854∗∗∗ 0.2380∗∗∗
(0.0057) (0.0077) (0.0098)

≤Reference -0.0098 0.6028∗∗∗
(0.0473) (0.0575)

≤Reference X ln Supply 0.2118∗∗∗ 0.2007∗∗∗
(0.0060) (0.0078)

N 32870 42263 42263 32870
R2 0.743 0.781 0.843 0.841
No. of Routes 82 82 82 82
Robust standard errors in parentheses
∗ p < .1, ∗∗ p < .05, ∗∗∗ p < .01

Table 10: Summary of Estimates of Consumer Surplus in millions euro (April-July) by Conservative
Approaches

Total (April-July) Average per day CS to Transactions
Non-Strike Days 125.3 1.46 0.636
Strike Days 70.1 1.95 0.641

Table 11: Additional Consumer Surplus due to Blablacar during SNCF Strike by Conservative
Approaches

(1) (2) (3)
Strike Day 0.3313∗∗∗ 0.3307∗∗∗

(0.0190) (0.0189)

Strike Rate (overall) 1.6153∗∗∗
(0.1012)

Linear Time Trend Yes Route-specific Route-specific
Route FE Yes Yes Yes
Weekday FE Yes Yes Yes
Month FE Yes Yes Yes
N 9966 9966 9966
R2 0.486 0.508 0.510
No. of Routes 82 82 82
Robust standard errors in parentheses
∗ p < .1, ∗∗ p < .05, ∗∗∗ p < .01

9 Discussion

9.1 On Consumer Surplus Estimation
Readers may challenge that the proposed method to calculate consumer surplus is questionable
since the observed demand curve, even if the manipulation by BlaBlaCar has been corrected by the
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information on the supply condition, may not truly reflect the price elasticity of the true market
demand curve. We acknowledge some common criticisms, such as the simplistic form of demand
curve, but argue that our proposed method at the very least gives a correct ranking of price elas-
ticity, and thus consumer surplus. Figure 11 illustrates two hypothetical demand curves in log-log
space obtained from estimating Equation 4, where the slope is exactly the price elasticity. On the
left hand side, the two curves have not been corrected by the supply condition, while they are
corrected on the right hand side. We first limit to the case that the two demand curves have the
same prediction of K.

If we exclude the information at the reference price and estimate the slope of the two sections
separately (Method A), we obtain the demand curves on the left hand side. The ranking of slope
(price elasticity) is correct in a sense that consumer surplus is larger under D2 when we observe
more passengers are willing to pay a higher price for the same trip. If we include also the infor-
mation at the reference price while not considering the supply condition (Method B), we obtain a
much flatter slope that considers also the spike in quantity demanded. Still, the ranking is correct.
When the supply condition is taken into account in the regression (Method C, D and E), the two
sections are ideally matched together as shown by the right-hand side. Again, the estimate of
the elasticity gives us a correct ranking of the consumer surplus of the two hypothetical demand
situation because passengers are willing to pay more for the same unit of trip.

Another extreme case is that the two demand curves are sharing the same slope but not the
same x-intercept (not graphically shown here). The ranking of the consumer surplus is also cor-
rect because we keep the ratios between intercepts of the observed demand curves constant while
projecting the intercepts to obtain the estimated true intercepts.

Cases in between (when two demand curves cross) are a bit more complicated and there could
be cases that we are unsure that which situation gives a higher consumer surplus. But the demand
curve can always be divided into sections and each section falls closer to the illustrated extreme
cases. To conclude, as no one really observes the maximum willingness to pay of consumers, all
estimation techniques are only approximations. Our proposed methodology, which relies on actual
data information and simple assumptions while avoiding guesses of parameters and calibration, is
arguably more transparent, reliable and produces as good estimates as other techniques.
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Figure 11: On the left hand side, the two curves have not been corrected by the supply condition,
while they are corrected on the right hand side.

9.2 On Welfare Estimation
The data presented in the previous sections compare the scale of BlaBlaCar consumer surplus
(passenger surplus) gain during strike with SNCF loss during strike. This demonstration, however,
should not be naively interpreted as the percentage of SNCF loss recovered by BlaBlaCar, for two
reasons. Firstly, not all SNCF loss is related to welfare loss of its users. Loss includes not is not
limited to sales loss, refund to passengers as well as extra costs of customer assistance. Even for the
sales loss and passenger refund parts which count for 160 million euros altogether, it is not equal
to the welfare loss because the welfare loss of SNCF passengers during the strike is not included.
Secondly, the welfare gain from using BlaBlaCar during strike cannot be reflected to SNCF welfare
loss either. Passengers who use BlaBlaCar with or without strike benefit from a welfare gain as
well. Some SNCF passengers became BlaBlaCar drivers during strike, whose welfare gain falls into
the producer (driver) surplus part that we have not analyzed in this paper.

Another possible extension of the paper is on the channel of calculating welfare. For the mo-
ment, we have only estimated material welfare impact using price. Time is another dimension
which may heavily influence welfare differently across route types. For routes between major cities
where high speed railway (TGV) system is well developed, taking SNCF could save hours com-
paring to taking BlaBlaCar. For routes between two secondary cities close by, often times only
normal speed trains (TER) are available and the time costs of the two modes are similar.

10 Conclusion
This work attempts to understand any effect of the SNCF strike from April to June 2018 on
ridesharing behaviours. Using the information available on BlaBlaCar official API, we construct
the market demand and supply of BlaBlaCar and find that the impact on demand was much larger
than on supply. Our estimate shows that demand on average increased by 37% on a strike day,
while supply increased by only 9%. We also provide a conservative and an optimistic estimate
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of the additional consumer surplus generated by BlaBlaCar as a platform between drivers and
passengers on an average strike day, which reached 0.48 - 2e million per strike day, or 2.30 - 9.78%
of the loss of SNCF per strike day. Our results show substantial substitutions between SNCF and
ridesharing on BlaBlaCar, providing evidence that the digital platform economy has significantly
transformed our economy.
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Appendices

A SNCF strike calendar

Strike dates are marked in red. Retrieved from
https://faq.trainline.eu/article/674-sncf-french-rail-strikes-2018 in 14th January 2019.

B Schema of trip search of BlaBlaCar

Demonstration of trip searching result
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Demonstration of trip information page and driver information page (below). Retrieved in January and Febuary
2018. All information were publically available.

Demonstration of driver information page. All demonstrations are retrieved in January and Febuary 2018. All
information were publically available.
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C Commission level of BlaBlaCar

Table 12: List of commission level charged by BlaBlaCar

Price charged by driver Commission level
1-6 1.0
7-8 1.5
9-11 2.0
12-13 2.5
14-16 3.0
17-18 3.5
19-21 4.0
22-23 4.5
24-26 5.0
27-28 5.5
29-32 6.0
33-35 6.5
36-37 7.0
38-40 7.5
41-42 8.0
43-46 8.5
47-50 9.0
>51 18% of price charged by driver, rounded at 0.5

Priced are in euro. Commission level is not changing according to routes, hours or days. Information collected from
https://blog.BlaBlaCar.fr/blablalife/lp/nouvelle-grille-de-frais-de-reservation
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D Selected routes

Table 13: List of routes scrapped (one way) and reference information

Route Upper price cap Lower price cap Default price Distance
Major to major cities
Paris Lyon 37 13 29 469
Paris Marseille 62 22 49 775
Paris Bordeaux 47 17 37 585
Paris Toulouse 54 20 43 679
Paris Strasbourg 39 14 31 492
Paris Nantes 30 11 24 385
Lyon Marseille 25 9 20 314
Lyon Bordeaux 45 16 36 556
Marseille Toulouse 33 12 26 403
Marseille Montpellier 14 5 11 170
Bordeaux Toulouse 19 7 15 246
Toulouse Montpellier 19 7 15 243
Paris Rennes 28 10 22 354
Major to secondary cities
Paris Lille 18 6 14 219
Paris Amien 12 4 9 144
Paris Reims 11 4 9 144
Paris Rouen 11 4 9 136
Paris Le-Mans 16 6 13 213
Lyon Grenoble 8 3 6 111
Lyon Clermont-Ferrand 13 5 10 165
Lyon Dijon 16 6 13 196
Lyon Chambery 8 2 6 108
Marseille Aix-en-Provence 3 1 1 33,2
Marseille Avignon 8 3 6 105
Marseille Toulon 5 1 4 66,3
Bordeaux Poitier 20 7 16 258
Bordeaux Pau 17 6 13 217
Toulouse Carcassonne 7 2 6 94,1
Montpellier Nime 4 1 3 56
Strasbourg Metz 13 4 10 165
Nantes Rennes 9 3 7 113
Nantes Anger 7 2 5 91,6
Secondary to secondary cities
Lille Calais 9 3 7 111
Rennes Saint-Malo 5 2 4 69,5
Rennes Caen 15 5 12 186
Nice Cannes 3 1 2 33,1
Le-Havre Rouen 7 2 5 92,6
Nancy Metz 4 1 3 56,7
Tours Le-Mans 7 2 6 104
Tours Poitiers 8 3 6 112
Dijon Besancon 7 2 6 96
Prices are in euro. The return routes are not listed here. They belong to the same category as their pairs and share
the same reference distance. However, a few routes’ default price and price caps are different from their pairs.

Notes

We thank Governance Analytics, especially Bruno Chavas and Faten Amama, for their support of computer pro-
gramming.
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