
A MONETARY THEORY OF

BLOCKCHAINS�

Dean Corbae
University of Wisconsin

Ted Temzelides
Rice University

Randall Wright
University of Wisconsin

January 31, 2019

Abstract

We develop a monetary theory of blockchains.
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1 Introduction

Government issued paper money has been the medium of exchange of choice for

well over a century. As technology and record-keeping improve, new possibilities

emerge involving (possibly private) monetary systems that can compete with

and eventually replace �at money. Some underlying conditions are necessary

for the viability of such e-cash systems. These include the need for intertem-

poral trade when simple barter does not su�ce, and the existence of frictions

that make credit non-viable, at least in some transactions. Paper money has

some other disadvantages. It can be stolen or counterfeited, it may be hard to

transport across space, unhygienic, etc.

In this paper we build a model of blockchains. Our environment combines

decentralized markets (DM) with endogenous matching, as in CTW, and cen-

tralized markets (CM) with quasi-linear utility, as in LW.

2 The Economic Environment

Time is discrete: t = 0; 1; :::. Let I = f1; :::; Ng be a �nite set of agents, where

N > 2 is an even number. Agents discount the future at the common discount

factor � 2 (0; 1). Each period consists of two subperiods. In the �rst, agents

interact in a DM, while in the second they participate in a CM. Agents consume

and work in both subperiods., and their overall period-utility is given by

U(x; h;X;H) = u(x)� c(h) + U(x)�H (1)

where x, h (X, H) are consumption and labor during the DM (CM). The DM

involves trade of perfectly divisible, non-storable goods. As is standard, we will

assume an extreme specialization of tastes and production possibilities that

makes trade necessary for consumption. Agent i likes good i only and produces

good i+1 only (mod k). The CM involves trade of a general good that is liked by
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everyone and can be produced by everyone using a linear production function.

As is standard, we assume u, c, U are C2, u0, c0, U 0 > 0, u00, U 00 < 0, c00 > 0,

u(0) = c(0) = 0, 9q� 2 (0;1) s.t. u0(q�) = c0(q�). The quantity q� is e�cient,

in the sense that it equates the marginal utility of the consumer to the marginal

cost of the producer in each transaction. We will pay exclusive attention to

setting up incentives in a way that q� is the resulting quantity exchanged in

each transaction. Abusing notation, we will henceforth use u to denote u(q�),

and c to denote c(q�). We will assume that c < �u. We also assume that in the

CM 9X� 2 (0;1) s.t. U 0(X�) = 1, with U(X�) > X�.

The details of trade are described next. We begin with the DM. Agents are

matched bilaterally in each period. This is described by an assignment rule

	 = f tg, where at every date t,  t : I ! I is a bijection that assigns to every

individual a partner. As a convention,  t[ t(i)] = i. At every date t,  t induces

a partition �t of A into subsets, or coalitions, of size 1 or 2. Let � be the set of

partitions consisting of all such coalitions.

Next, we de�ne an equilibrium. Our equilibrium concept uses both coali-

tional stability (DM) and competitive equilibrium (CM) elements.

Let zit be the individual state. The aggregate state, Zt, speci�es z
i
t for every

i. Let �it be an individual decision variable, constrained to lie in a set which

generally depends on the state, �i(Zt). Let �t specify �
i
t for every i. Let Yt =

(�t; Zt; �t), and denote instantaneous payo�s by w
i
t(Yt) and the law of motion for

the state by Zt+1 = f(Yt). A history at t is given by ht = (Y0; Y1; :::; Yt�1; Zt),

and Ht is the set of possible histories. Matching is described by � = f�tg where

�t : Ht ! �. For each agent i we also have a decision rule �i = f�itg where

�it : Ht ��! �i. Let � specify the pro�le of individual decision rules.

For any � and �, lifetime utility of agent i at t in history ht is given by

vit(ht) = wit [�t(ht); Zt; �t] + �v
i
t+1(ht+1) (2)

where �t is determined from the decision rules �
i
t(ht; �t) and ht+1 is constructed
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in the obvious way. An equilibrium In the DM is a pair (�;�) such that for every

t and ht, no coalition C consisting of 1 or 2 agents can do better by deviating

either by matching di�erently than as prescribed by � or by taking a decision

di�erent than that prescribed by �. When we say that C does better we require

two things. First, agents take as given that at date t, every j =2 C matches

according to �, as above. Second, from date t + 1 on, matches and decisions

are determined by (�;�) from the history ht+1 induced by the deviation. In a

history-independent equilibrium, (�;�) does not depend on ht except through

the current state Zt.

As the CM is "frictionless," we will model it as a Walrasian market and

employ competitive equilibrium as the solution concept. An overall equilibrium

requires equilibrium in both the DM and the CM.

3 The First-Best

Since meetings in the DM are bilateral, the best possible symmetric allocation

has every agent consuming and producing in every other period. This allocation

is e�cient, provided that u > c. For example, at t = 0, agent 1 produces for

agent 2, agent 3 produces for agent 4, and so on, while at t = 1, agent 2 produces

for agent 3, agent 4 produces for agent 5, and so on, and this periodic pattern

repeats every two periods. The lifetime utilities in this e�cient allocation are

as follows:

Agents 2; 4; :::; N : W e =

1X
t=0

(u� �c) = u� �c
1� �2

Agents 1; 3; :::; N � 1: W e =
1X
t=0

(�c+ �u) = �c+ �u
1� �2 (3)

Of course, a symmetric e�cient arrangement exists in which we start with agents

2; 4; :::; N producing and agents 1; 3; :::; N�1 consuming at t = 0 and so on. The
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e�cient allocation satis�es two conditions. First, no production/consumption

opportunities are lost. Second, the e�cient quantity, q�, is produced and con-

sumed in every exchange. The �rst-best allocation in the CM is indeterminate

and involves any combination across agents that leads to consumption and pro-

duction of X�, where U 0(X�) = 1.

In what follows, we will concentrate on e�cient allocations; i.e., those in

which no trade opportunities are lost, and where the socially e�cient quantity

is exchanged in all trades.

4 Blockchains

We model a technology that decentralizes both information and record-keeping.

While there is a large literature on blockchains, it tends to concentrate on in-

vestigating its cryptography and computer implementation aspects.1 Here we

will largely abstract from these aspects in order to concentrate on economic

incentives related to the monetary/transactions aspect of the problem. More

precisely, we will demonstrate how this technology can decentralize information

and support an analog of the �rst best allocation of the previous section. Our

analysis is mainly normative, in the sense that we study the implementation of

e�cient transaction patterns under blockchain technologies, rather than trying

to replicate properties of existing blockchains systems.

Abstracting from details, a blockchain is e�ectively a technology allowing for

money transfers, say, from buyers to sellers, to take place instantly and in the

absence of a third "trusted" intermediating party. These transactions are then

recorded in a "decentralized" fashion. This is accomplished through the concept

of an "open distributed ledger." Every time a transaction occurs, this is added

as part of a new "block;" thus, updating the chain of the existing blocks in the

ledger. Importantly, the updated ledger, including every participant's balance,

1Exceptions include...
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is "distributed," that is, it is available to every "node;" i.e., every participating

agent in the network. This removes the dependence on third parties. Of course,

it is essential that the distributed ledgers are "synchronized," in the sense that

they are showing the same balances, summarizing the same histories of trans-

actions, at each point in time. In addition, it is necessary to ensure that every

update of the ledger is credible and no illegitimate changes are made. In current

practice, a common way to accomplish this involves "proof of work" schemes

which, in turn, impose certain (mining) costs. Thus, actual blockchain systems

consist of a set of "users" who wish to perform transactions, together with a set

of "miners," who encode them and add them to the ledger. Other aspects are

present, some due to technology constraints, others due to choice of design.

Miners are compensated only when they are selected to mine a block. The

reward is in an electronic currency, say, bitcoin. There can also be transaction

fees paid by the users whose transactions are to be processed. The protocol

speci�es how many bitcoins are awarded for each block. Interestingly (from a

monetary theory point of view), this number is set to decline over time (halved

every four years). Transaction fees are chosen by the users, who might try to

gain priority in the case where the system is congested and there are delays. In

that case, miners will prioritize the recording of transactions for users who are

willing to pay higher fees.

It is important to point out that mining costs can be substantial (for exam-

ple, in implied electricity consumption), and there is concern about the social

waste associated with such activities. For example, when multiple miners are

working on a problem, they all use a substantial amount of computer power,

although only one will eventually solve the underlying problem and earn the

reward associated with the ability to record a transaction.

Our model will abstract from many of the ad hoc aspects of actual blockchain

structures. For example, we assume that each block contains one transaction,
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and we currently do not distinguish between �xed (bitcoin) and transaction fee

compensation for miners.

5 Decentralization through a Blockchain

Here we introduce blockchains as a way to induce trade in the DM. Our goal

will be to support the e�cient allocation in the absence of public memory. We

can think of all agents simultaneously making reports to the blockchain in every

period. If the reports "match" in the obvious sense; i.e.,

i : "sending m bitcoins to j in exchange for q units of good"

j : "sending q units of the good to i in exchange for m bitcoins"

then we would like to assign them to a new block and add them to the blockchain.

Otherwise, they are ignored. A blockchain is a sequence of vectors of nonneg-

ative balances f(Bit)Ni=1g1t=0 with (Bi0)Ni=1 2 RN+ given, and a rule f for updating

these balances, where (Bit+1)
N
i=1 = f [(Bit)

N
i=1;agents' reports at t]. Recording

requires the use of a "miner." In principle, each of the N agents can be a miner.

For now, we assume that there are � = n additional agents, whom we will call

miners. A miner can verify and record at most one transaction per period, at

cost CB . He is compensated for his e�ort in the centralized market. We assume

that this compensation, Y , will be paid by the consumers in the DM transac-

tions and that the payment comes through transferable utility in the next CM.

Since the CM will re-initialize agents' balances, we will concentrate on balance

adjustments that do not depend on t; i.e., (Bit+1)
N
i=1 = f [agents' reports at t].

5.1 Rationing

One important feature of actual blockchains is the possibility that the volume

of transactions needing to be recorded in a given period exceeds the recording
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ability of the system. In that case, some "rationing" will need to take place.

Given the decentralized nature of the ledger, it is important that the rationing

is implemented in a way that all participants update their ledgers in the same

way. We will consider the case where technical constraints result in � � n = N
2

transactions being recorded in every period. We will consider the following

rationing rule for the case where � < n: each of the n transaction pairs chooses

and publicly submits a number in the interval [0; 1]. Subsequently, a real number

in [0; 1] is randomly chosen and announced publicly. The � transactions that are

associated with the announcements that are the closest to the chosen number

are assigned to miners for implementation (ties are probability zero events).

For now, we assume that remaining n�� transactions are dissolved and do not

materialize (we can change this later, to introduce a queue).

Two features of the above scheme are worth noting. First, it relies on a

random choice of number that becomes common knowledge. Thus, each agent

can update their ledger in the same way, since there is no ambiguity as to which

transactions were the closest to the number. Second, from a modeling point of

view, this scheme e�ectively introduces random matching in the DM, although

agents have no problem locating each other. The randomness is the result of

the rationing.

Returning to the realized transactions, the system will transfer m bitcoins

from the buyer to the seller in the transaction. How is the miner compensated

for his cost? The total static surplus created in a transaction is u � c � CB .
2

To compensate the miner, we assume that a fraction of the surplus, Y , will be

paid as transferable utility in the CM to the miner by the buyer.

LetW (M) be the value function of an agent withM bitcoins at the beginning

of period t's CM. Recall that we concentrate on supporting the e�cient quantity

2In actual blockchains, miners' compensation comes from two sources: (1) newly-minted
bitcoins paid by the blockchain, and (2) fees paid by the transaction participants. The �rst
source is designed to vanish over time. Here we assume that only the second source is present.
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in every transaction. How is m determined? We can use Nash bargaining

assuming the "e�cient" bargaining weights in order to accommodate the Hosios

ine�ciency:

max
q;m

[u(q) +W (M �m)�Wt(m)]

s.t. m �M; q � 0 (4)

Let � be the price of bitcoin in the CM. The ex ante value function of a buyer,

a seller, and a miner with M bitcoins at the beginning of period t's DM are

respectively given by:

V B(M) = minf1; �
n
g
�
u+W (M �m� Y

�
)

�
+

�
1�minf1; �

n
g
�
W (M)

V S(M) = minf1; �
n
g [�c+W (M +m)] +

�
1�minf1; �

n
g
�
[W (M)]

VMi(M) = minf1; �
n
g
�
�cB +W (M +

Y

�
)

�
+

�
1�minf1; �

n
g
�
[W (M)](5)

Certain incentive conditions must hold:

buyer: u+W (M �m� Y

�
) �W (M)

seller: � c+W (M +m) �W (M)

miner: CB +W (M +
Y

�
) �W (M) (6)

Finally, W (M), the value function of an agent withM bitcoins at the beginning

of period t's CM is:

W (M) = max
X;H;M 0

�
U(X)�H + �V i(M 0)

	
s.t. X = H + �M � �M 0

i 2 fB;S;Mig; X � 0; M 0 � 0; 0 � H � H (7)
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Note that the above value functions are written guessing that all agents will

exist the CM with the same amount of money holdings in each period.

6 Blockchain Equilibrium

We can de�ne aDynamic Blockchain Equilibrium as an array
�
V Bt ; V

S
t ; V

Mi
t ;Wt; Xt;Ht;m

0
t; qt; �t

	
s.t. (i) given prices, the decision rules satisfy the respective FE; (ii) given value

functions, terms of trade in the DM solve the bargaining problem; (iii) �t > 0;

(iv) the CM clears, (v) meetings in the DM are consistent with stable matching.

We can then think of monetary policy as lump-sum bitcoin transfers in the

CM and conjecture that the Friedman rule will be optimal.

7 Questions to be Addressed

1. This is written as if all agents exit the CM with equal money balances.

However, agents will start the next DM as heterogeneous (buyers, sellers,

miners).

2. Miners can only be compensated in the CM. Should miners also trade in

the DM?

3. If a transaction is rationed, we assume that it "disappears." We can have

it enter a queue instead and be executed with some probability in the next

period. Multiple DM rounds before each CM?

4. Other than optimal monetary policy, other issues can be addressed.
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