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In a productive economy, savings made by a generation are expected to benefit more

than proportionally to future generations. But how such a sacrifice for growth should be

shared among heterogeneous regions? With constant elasticity of substitution specification,

I show that there is an unequal ‘burden-sharing’ between North and South when the econ-

omy grows toward the highest sustainable level of welfare: the golden rule. This depends

upon two fundamentals elements: the marginal productivity gap and the inequality aver-

sions. The intragenerational inequality aversion does not impact the final steady state. But

the intra and intergenerational inequality aversions impact the dynamic. In particular, the

higher the inequality aversions, the more North and South share an equal burden to grow.

Unequal treatments do not allow to reverse the higher sacrifice asked to South. This pa-

per leads to the conclusion that transfers from North to South shall be implemented for a

sustainable development.
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“. . . we do not discount later enjoyments in comparison with earlier ones, a

practice which is ethically indefensible and arises merely from the weakness of the

imagination.”

Ramsey (1928, p. 543)

Abstract

1 Introduction

Growth rather than decline is surely an unanimous criterion of economic development. At

least as long as this process is sustainable. But for making a production (then implicitly an asset)

to grow, we shall not consume our entire income, i.e. “the amount which [people] can consume

without impoverishing themselves” (Hicks, 1939/1946, p. 172).1 For a natural resource, we

shall not harvest the entire renewal. In a word, we need savings. In an intergenerational per-

spective, as conceived by Ramsey (1928), this can be viewed as a sacrifice of the current gen-

eration to the benefit of future ones. But how should this sacrifice be shared among individuals

living in the same generation? Growth theory already answered this question for an aggregate

capital and a representative agent through the optimal savings timing. But the question of shar-

ing sacrifice comes to interest once there is an heterogeneity. As argued by Schelling (1995):

“it is this willingness to model all humankind as a single agent that makes optimization models

attractive, feasible, and inappropriate”.

The one-sector Solow-Swan (1956) neoclassical growth model was extended to the two-

sector case by Uzawa (1961, 1963), but the savings rate is considered as exogenous. The

Ramsey model of optimal saving was extended to the multiple goods-sectors case by Samuel-

son and Solow (1956). But their approach was not very much followed in the literature. A

notable exception that does not collapse to the single sector case was provided by Pitchford

(1977). But the two sectors, each in one region of the economy, produce one single good,

which does not allow to consider inequality in consumptions. Rather, two-sector economy was

mainly analyzed through the discounted version of the Ramsey model (Ramsey, 1928; Cass,

1965; Koopmans, 1965) (RCK hereafter). This was the case to deal with, for instance, physi-

cal capital and exhaustible resources (Dasgupta and Heal, 1974) or physical and human capital

(Lucas, 1988).2 On the other hand, heterogeneity of agents was analyzed both in the Solow-

Swan model (Stiglitz, 1969) and in the RCK model, through different individual discount rates

1Hicksian income refers more precisely to “the maximum value which [a man] can consume during a week,
and still expect to be as well off at the end of the week as he was at the beginning. Thus, when a person saves, he
plans to be better off in the future; when he lives beyond his income, he plans to be worse off ” (p. 172). This idea
can be tracked back to Fisher (1906) and Lindahl (1933) (cited in Heal, 1998, p. 156).

2In a sense, a two-sector RCK model was earlier proposed by Srinivasan (1964) and Uzawa (1964), but in an
non-utilitarian approach.
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(Ramsey, 1928; Becker, 1980; Becker and Foias, 1987) or through different initial endowments

of wealth (Chatterjee, 1994; Caselli and Ventura, 2000)3. Heterogeneity of both sectors and

agents in the RCK model was proposed by Becker and Tsyganov (2002), but there are one cap-

ital good and one production good that can be aggregated into one single production. Endress

et al. (2014) combined intergenerational equity with individual impatience in an overlapping

generations model, but without referring to inequality aversion.

More broadly, both intra and intergenerational considerations of sharing resources can be

found in the growth-inequality literature. Even if trends of long-term economic development

and allocation of wealth was analyzed by the classical economists in the Nineteenth century, it

was first extensively analyzed with use of data by Kuznets (Kuznets and Jenks, 1953; Kuznets,

1955). According to him, inequalities rise, then decrease, in the process of development. This

topic was further analyzed by Atkinson and Harrison (1978), and current works refute the

Kuznets hypothesis (e.g. Piketty, 2015). For a review of the growth-inequality relationship

see Aghion et al. (1999) and Garcìa-Peñalosa (2017).

Though linked, the question here is different in the sense that I am interested in linking ethi-

cal judgments with outcomes of the allocation, both between individuals living at the same time

and between different generation living, by definition, at different dates. This is the so-called

intra and intergenerational equity relationship (Isaac and Piacquadio, 2015, Kverndokk et al.,

2014, and the references in there). Equity can be taken as a requirement of equal treatment.

Here, all individuals (and all generations between them) will have the same weight in the public

decision4.

On the intergenerational dimension, the intertemporal social welfare criterion has to satisfy

finite anonymity: a finite number of permutations in the time of appearance of two generations

shall not change the result. This is supported by a long tradition in economics and philosophy

against discounting future welfares. For Sidgwick (1874/1962, p. 414) “the time at which a

man exists cannot affect the value of his happiness from a universal point of view”. Ramsey

(1928, p. 543) qualified discounting as “a practice which is ethically indefensible and arises

merely from the weakness of the imagination”. Pigou (1920, p. 25) argued that “our telescopic

faculty is defective”, and suggested that “the State should protect the interests of the future in

some degree against the effects of our irrational discounting and of our preference for ourselves

over our descendants (Pigou, 1932, p. 29). For Harrod (1948, p. 40), the pure time preference

is a “polite expression for rapacity and the conquest of reason by passion”. For Rawls (1971,

p. 287), “from a moral point of view there are no grounds for discounting future well-being on

the basis of pure time preference”. Finally, according to Solow (1993, p. 165) “no generation

3See also Garcìa-Peñalosa and Turnovsky (2012) and the references in there.
4There is not a unique accepted definition of the word ‘equity’. Our requirement here is in line with a dictionary

definition: “equity is the quality of being fair and reasonable in a way that gives equal treatment to everyone.”
(source: https://www.collinsdictionary.com/dictionary/english/equity, visited on May 2018).
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‘should’ be favored over any other”. But as shown by Koopmans (1960), if a (social) criterion

of infinite utility stream satisfies some5 a priori desirable axioms, it has to exhibit ‘impatience’,

i.e. discounting. Following his approach, Diamond (1965) stated a classic impossibility result:

such a criterion cannot both be efficient (strong Pareto) and treat all generations equally. For a

critical survey of related results see Asheim (2010). The Ramsey (1928) approach satisfies both

‘efficiency’ and ‘equity’ but is incomplete.

The intragenerational equity can be understood in several ways, see for example Fleurbaey

and Maniquet (2011). But, far from reaching exhaustiveness, a symmetric social welfare func-

tion à la Bergson (1938)-Samuelson (1947) can represent different equity views of a society.

Here I study savings – understood as the difference between the sustainable individual max-

imal consumption and the actual consumption – made by different individuals when society

wishes to reach the highest sustainable social well-being: the golden rule (Ayong Le Kama,

2001). This may be interpreted as ‘generosity’ toward future possible attainable welfare (Ger-

lagh, 2017). I model two regions, North and South, each one has access to a different resource

stock, in the spirit of Samuelson and Solow (1956). The intratemporal social preferences are

represented through a social welfare function (SWF) with a constant elasticity of substitution

(CES). The parameter of elasticity may be interpreted as a parameter of inequality aversion

(Atkinson, 1970). Indeed, such a function encompasses two famous special cases: utilitari-

anism (elasticity goes to infinity) and the symmetric minimum, sometimes called “Rawlsian”

(elasticity goes to zero). Symmetrically, the intertemporal social preferences are represented

through an intertemporal SWF with a constant intertemporal elasticity of substitution (CIES).

More precisely, I minimize the difference between the welfare targeted and the actual welfare,

in the spirit of Ramsey (1928). Here also, the parameter of intertemporal elasticity may be

interpreted as a parameter of intertemporal inequality aversion (IA). As in its instantaneous

counterpart, such a function can tend to a nil IA case (elasticity goes to infinity) or to an infi-

nite IA case (elasticity goes to zero). Interestingly, this latter case corresponds to the maximin

(d’Autume and Schubert, 2008a), which has resonance with assessing sustainability (Cairns and

Martinet, 2014; Fleurbaey, 2015a).

I show that when society has to make an intergenerational sacrifice, three elements guide

its sharing. The marginal productivity gap, the intragenerational inequality aversion and the

intergenerational inequality aversion. The former indicates that the region having access to a

relatively more productive asset (North) may afford a relative higher consumption. Paradox-

ically, the region having access to the relatively less productive asset (South) has to make a

5He considered the following properties: the utility is ordinal, continuous, satisfies sensitivity – one can distin-
guish two trajectories even if they differ only in their first element, – intertemporal complementarity – consumption
on a given period does not impact the comparison between two alternatives on another period, – stationarity – com-
parison of two alternatives does not change when one goes forward in time – and if a best path and a worst path
exist.
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higher sacrifice. This comes from the fact that the South has a higher marginal productivity.

The impact of the productivity gap on the consumption growth rates of the region is weighted

by the two inequality aversions (IAs). The role played by the IAs can be ambiguous according

to their level. But generally, the more one is willing to substitute welfare of each region, the

more one can take advantage of their differences, then the sacrifices are more more unequal.

At the opposite, when society exhibits an infinite intragenerational inequality aversion, growth

rates of North and South are equal, whatever the productivity gap. And if society exhibits an

infinite intergenerational inequality aversion, growth rates of North and South are equal (at the

limit) to zero, since no sacrifice for the future is tolerated.

The next Section introduces the model: first in isolation, regions are collectively considered

afterward. Section 3 exhibits links with the green accounting literature. I allow for an unequal

treatment of regions and generations in Section 4. I discuss the relevance of discounting as a

tool to prevent huge sacrifices in Section 5. Section 6 concludes.

2 Maximizing intergenerational welfare

I study an economy composed of two regions – North and South – with an infinite number

of generations, each one consuming ci of the asset i = N,S. I first study how each region in

isolation can grow efficiently toward their highest sustainable level of utility, their golden rule

(GR) uGR
i . Then I consider a global social planner that derives an instantaneous social welfare

function (SWF) from the utilities of the regions. And I study how this global economy can grow

efficiently toward the global golden rule W GR.

2.1 Framework

Each region is endowed with a stock of renewable resource Xi. The natural renewals Fi is

assumed to be increasing, strictly concave and such that Fi(0) = 0 = Fi (X̄i), where X̄i stands for

the carrying capacity.6 They reach a maximum at the golden-rule stock XGR
i . The dynamics of

the stock is then given by

dXi(t)
dt
≡ Ẋi(t) = Fi(Xi(t))− ci(t) , i = N,S . (1)

Two approaches are possible to handle the welfare part. (1) Considering a constant elasticity

of substitution (CES) SWF of consumptions (or utilities) from North and from South. And

taking an increasing transformation of such a SWF to obtain a constant intertemporal elasticity

of substitutions (CIES) SWF. (2) Considering a CIES utility function in each region with the

6I recognize that the dynamics of some resources cannot be represented by such functions. This is a stylized
feature.
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same elasticity parameter and representing them through a CES SWF. I represent them formally

below.

Let θ be the intratemporal elasticity of substitution, with θ > 0 , θ 6= 1. And let σ be

the intertemporal elasticity of substitution, σ > 0 , σ 6= 1. For the sake of simplicity, let us

introduce the parameters η ≡ θ−1
θ

and ν ≡ σ−1
σ

, with η ,ν < 1 and η ,ν 6= 0. Those elastici-

ties (θ and σ ) can be interpreted as parameters of inequality aversion (Atkinson, 1970): from

0 (infinite inequality aversion) to infinity (nil inequality aversion). Let me also put regional

weights aN ,aS > 0 such that aN +aS = 1.7 But for now consider only the case aN = aS =
1
2 . In

mathematical terms, the two versions of the SWF are8

W (1) (cN ,cS) =

((
aN · cη

N +aS · cη

S

) 1
η

)ν

ν
; (2)

W (2) (cN ,cS) =

(
aN

(
cν

N
ν

)η

+aS

(
cν

S
ν

)η) 1
η

. (3)

The first version allows to disentangle intertemporal from intratemporal distributional is-

sues. Indeed the intertemporal substitution applies on each instantaneous aggregated SWF.9

On the opposite, the second version allows to compare intertemporal decisions for each region

and for the whole economy. With η → 1 (θ → ∞) the global problem tends to be the sum of

each regional ones. For this reason, I will follow the second approach (actually, it can easily

be shown that the two approaches are formally equivalent10). Regional utilities are strictly con-

cave but identical: ui(ci) =
cν

i
ν

. Here again, this captures the idea of responsibility for turning

consumption into utility.

Let me now solve the intertemporal problem for our two regions considered separately.

Afterward they will be considered collectively to allow for comparisons.

7The condition aN + aS = 1 (resp. the −1 in its intertemporal counterpart) is there only for having the Cobb-
Douglass (resp. the logarithm) as a special case in the limit.

8To simply calculus, I omit the −1 usually put in CIES functions.
9See d’Autume and Schubert (2008a) and d’Autume et al. (2010) for models adopting this approach.

10Consider the following variable change: η ′ = νη . It comes W (2) (cN ,cS) =

(
aN

(
cν

N
ν

) η ′
ν

+aS

(
cν

S
ν

) η ′
ν

) ν

η ′

=

(
aN ·c

η ′
N +aS·c

η ′
S

) ν

η ′

ν
.
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2.2 Two regions considered separately

At the beginning, the regions are endowed with the stocks Xi(0) = Xi0. It is useful to com-

pute the maximin consumption for each region in isolation. One directly obtains it by

cm
i =

{
Fi(Xi0) if Xi0 ≤ XGR

i ;

Fi
(
XGR

i0
)

if Xi0 > XGR
i .

(4)

If a region is endowed with a low stock (lower than the golden-rule stock), it can at best consume

its regional production. Growth toward a higher consumption can come only at the price of a

sacrifice, ci < Fi(Xi), over any period of time. On the contrary, if a region is endowed with an

abundant stock (higher than the golden-rule stock), the GR uGR
i = ui

(
Fi
(
XGR

i
))

, is attainable

at no cost. Indeed a path with dissavings, ci > Fi(Xi), is possible as long as the stock, when

decreasing, does not overshoot the golden-rule stock. I am particularly interested here in the

first scenario because reaching the GR calls for sharing sacrifice between generations. To do

so, let us maximize the welfare of all future generations. To get a solvable problem, I resort to

the classic Ramsey’s (1928) device. Recall ui(ci) =
cν

i
ν

. The regional intertemporal welfares are

given by11

v(Xi0) =max
ci

∫
∞

0

(
ui(ci)−uGR

i

)
dt ; (5)

subject to Ẋi = Fi(Xi)− ci ; (6)

Xi0 given . (7)

I assume the utilities evolve fast enough such that the integrals are finite (discussion on conver-

gence may be found in Chakravarty, 1962, and Chiang, 1992, pp. 99-101). The Hamiltonians

are

Hi(Xi,ci,ψi) = ui(ci)−uGR
i +ψi(Fi(Xi)− ci) . (8)

The necessary conditions are

∂Hi(Xi,ci,ψi)

∂ci
= 0 ⇔ ψi = cν−1

i ; (9)

−∂Hi(Xi,ci,ψi)

∂Xi
= ψ̇i ⇔ −ψ̇i

ψi
= F ′i (Xi) ; (10)

lim
t→∞

Hi(Xi,ci,ψi) = 0 . (11)

As usual, the shadow-price of a stock equals its marginal value in terms of utility (eq. (9)).

Here, as there is no time preference, it always pays to save (ψ̇i < 0⇔ ċi > 0) as long as the

11As a by-product of this analysis, the ‘abundance’ case – when the initial stock is higher than the golden-rule
stock – is also handled: the objective maximize the current utility, net of its lower limit.
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marginal return on capital is positive (eq. (10)). From the equations (9) and (10), one obtains

(1−ν)
ċi

ci
= F ′i (Xi) ⇔ ċi

ci
= σF ′i (Xi) . (12)

This is the so-called ‘Keynes-Ramsey rule’ without discount factor. The consumption growth

rates depend positively on the marginal productivity, since it pays to save for growth, and posi-

tively on the intertemporal elasticity of substitution (IES), since a higher value of this parameter

represents a higher willingness to substitute current for future welfares. Society saves more to-

day in order to have a higher utility in the future. At the limit, if the parameter tends to infinity,

the sacrifice at the benefit of future generations is maximal. At the other limit, the growth rate

becomes constant, i.e. the sacrifice tends to be nil, when the IES approaches zero. No sub-

stitutions between current and future welfares are tolerated and one approaches the individual

maximin consumptions cm
i .12

As a preliminary for comparison with the collective problem, let me simply remark that the

eq. (12) hold for North and South. One can therefore write

ċS

cS
− ċN

cN
= σ

(
F ′S(XS)−F ′N(XN)

)
. (13)

The difference in regional growth rates equals the (marginal) productivity gap weighted by the

IES.

With the transversality condition, the unique individual steady states are characterized by

(the proof of the stability is omitted since this case is very classic)

c?i = Fi

(
XGR

i

)
, F ′S

(
XGR

S

)
= 0 = F ′N

(
XGR

N

)
, ui(c?i ) = uGR

i , i = N,S . (14)

Integrating both sides of the equation (13) and using the final consumptions, it comes13

cN(t)
cS(t)

=
cGR

N

cGR
S

eσ
∫

∞

t (F ′S(XSr)−F ′N(XNr))dr . (15)

I will come back to this equation for the collective problem.

12For a proof of a CIES approaching the maximin at a zero IES, see d’Autume and Schubert (2008a). See also
d’Autume et al. (2010) for the undiscounted case.

13∫ ∞

t

(
ċS
cS
− ċN

cN

)
dr =

∫
∞

t σ
(
F ′S(XSr)−F ′N(XNr)

)
dr+a ⇔

[
−ln

(
cN
cS

)]∞

t
=σ

∫
∞

t
(
F ′S(XSr)−F ′N(XNr)

)
dr+a ⇔

ln
(

cN(t)
cS(t)

)
= ln

(
cGR

N
cGR

S

)
+σ

∫
∞

t
(
F ′S(XSr)−F ′N(XNr)

)
dr.
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2.3 Two regions considered collectively

I now consider the problem of a ‘world’ social planner. At the beginning, the economy

is still endowed with stocks (XN0,XS0). The maximin solution of this problem can be found

in Cairns et al. (2016). A useful reference path is the as-good-as-golden locus (Phelps and

Riley, 1978) obtained with the maximin framework: all stocks from which the welfare level is

exactly that of the GR. It generalizes the GR concept to several dimensions. As in the previous

subsection, I will mainly be interested in initial stocks lower than such a locus (this corresponds

to the regular part of Cairns et al. (2016)). The GR is now given by W GR =W
(
cGR

N ,cGR
S

)
, with

cGR
i = Fi

(
XGR

i
)
. Recall W (cN ,cS) =

(
aN

(
cν

N
ν

)η

+aS

(
cν

S
ν

)η) 1
η

. Let us compute the global

intertemporal welfare in the same manner than previously14

V (XN0,XS0) =max
cN ,cS

∫
∞

0

(
W (cN ,cS)−W GR

)
dt ; (16)

subject to ẊN = FN(XN)− cN ; (17)

ẊS = FS(XS)− cS ; (18)

(XN0,XS0) given . (19)

Here also, I assume that the welfare evolves fast enough such that the integral is finite. The

Hamiltonian is

H (Xi,ci,ψi) =W (cN ,cS)−W GR +ψN(FN(XN)− cN)+ψS(FS(XS)− cS) . (20)

The necessary conditions are

∂H (Xi,ci,ψi)

∂ci
= 0 ⇔ ψi = aiW 1−η ·

cην−1
i

νη−1 ; (21)

−∂H (Xi,ci,ψi)

∂Xi
= ψ̇i ⇔ −ψ̇i

ψi
= F ′i (Xi) ; (22)

lim
t→∞

H (Xi,ci,ψi) = 0 . (23)

From the equations (21) and (22), it comes

−(1−η)
Ẇ
W

+(1−ην)
ċi

ci
= F ′i (Xi) ⇔ ċi

ci
=

θσ

θ +σ −1

(
F ′i (Xi)+

1
θ

Ẇ
W

)
. (24)

The (apparent) consumption growth rates still depend on marginal productivity, but also on

elasticities of substitutions in a subtle way. Let me first study the consumption growth rates

when each elasticity reaches its limits. There are four cases.15 Note θ ≡ 1
1−η

and σ ≡ 1
1−ν

.

14Here also, as a by-product of this analysis, the ‘abundance’ case is also handled.
15The names of theses four cases are a misuse of language since the general case approaches the one mentioned.
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L1. Intragenerational utilitarianism: θ → ∞, ċi
ci
→ σF ′i (Xi).

L2. Intragenerational maximin: θ → 0, ċi
ci
→ σ

σ−1
Ẇ
W .

L3. Intergenerational utilitarianism: σ → ∞, ċi
ci
→ θF ′i (Xi)+

Ẇ
W .

L4. Intergenerational maximin: σ → 0, ċi
ci
→ 0.

When the intragenerational IA is nil (case L1), the collective problem corresponds to the

problem of two separated regions (see the eq. (12)). And only the intergenerational IA matters.

In the same way, when the intergeneration IA is nil (L3), only the intragenerational IA mat-

ters. Interestingly, when the IA becomes infinite in one dimension (L2 or L4), the consumption

growth rates do not longer depend on productivities, and are therefore equal. Intuitively, as no

‘substitution of well-being’ is tolerated with the maximin, there is no growth rates inequality.

In the intragenerational maximin (L2), growth rates depend equally on the intergenerational

dimension. When the intergenerational IA is infinite (L4), growth rates approach zero, and

the sacrifice is very low. For the opposite reason, when IA become nil in the two dimensions

(θ ,σ → ∞), growth rates becomes infinite and then ‘close’. I now turn the study of the differ-

ence in growth rates.

Let us equalize the common term in the eq. (24), for i = N,S, to obtain

ċS

cS
− ċN

cN
= κ

(
F ′S(XS)−F ′N(XN)

)
, with κ ≡ θσ

θ +σ −1
. (25)

Relatives growth of individual consumptions depend on the difference of marginal produc-

tivities, weighted by the intra and the intergenerational inequality aversions. Without loss of

generality, I will only consider the case of a marginally more productive stock in the South,

F ′S(XS)≥ F ′N(XN), to capture the idea of a relative less abundant stock.

It may firstly be noted that the two elasticities have a different impact on the regional con-

sumption paths (eq. (24)), but exactly the same on the difference of consumption growth rates

(eq. (25)). Let me differentiate κ in order to study the relationship between the two dimensions.

One has

−dσ

dθ

∣∣∣∣
κ

> 0 ⇔ 1−σ

1−θ
> 0 . (26)

Then, as far as the evolution of the difference in consumptions is concerned, the two IA are

‘substitutes’ if they are both sufficiently high (θ ,σ < 1) or both sufficiently low (θ ,σ > 1).

And ‘complements’ in all other cases.

To better understand these features, I now study the sign of κ and make simple comparative

statics.

• κ > 0 ⇔ θ +σ > 1 ;
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• dκ

dθ
> 0 ⇔ σ > 1 and dκ

dσ
> 0 ⇔ θ > 1 .

Five cases have to be distinguished, as it is shown in Fig. 1.

I

III

II

IV

V

1

10

σ

θ

Figure 1: Possibilities for inequality aversions

Let us sum up the signs of level and variations of κ in each situation.

I. κ > 0 ; dκ

dθ
> 0 ; dκ

dσ
> 0 .

II. κ > 0 ; dκ

dθ
> 0 ; dκ

dσ
< 0 .

III. κ > 0 ; dκ

dθ
< 0 ; dκ

dσ
> 0 .

IV. κ > 0 ; dκ

dθ
< 0 ; dκ

dσ
< 0 .

V. κ < 0 ; dκ

dθ
< 0 ; dκ

dσ
< 0 .

Regarding sign, if intra and intergenerational IAs are low (I to IV), the difference in regional

consumption rates is positive (see the eq. (25)). That means that everything else being equal, the

higher the marginal productivity of the stock available in the South, the higher its consumption

growth rate. Since the South has access to a more productive stock, a reduction of its con-

sumption leads to a better return. South has therefore to make a relative higher sacrifice. This

could seem surprising: taking into account intragenerational concerns in a classic accumulation

model leads to rise the difference of optimal development between unequal regions. Rather, it

seems rational to take advantage of initial differences, but of course this calls for redistribution

mechanism both for ethical and for practical reasons of implementing such a decision rule. In-

terestingly, if intra and intergenerational IAs are sufficiently high (V), the previous reasoning is

reverse and North has to make a relative higher sacrifice. In any case, when marginal productiv-

ities converge toward each other (approaching the GR), the regional consumption growth rates

converge too. The levels of consumption converge as well, as explained below.
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Regarding variations, if intra and intergenerational IAs are sufficiently low (I), the lower the

IA, the higher the difference in regional consumption growth rates (see the eq. (25)). On the

opposite, and counter-intuitively, if both IA are high (IV and V), the lower the IA, the lower the

difference in regional consumption growth rates. There are two intermediary cases when the

IA is low in one dimension but high in the other dimension (II and III). They correspond to the

‘complementarity’ cases displayed in the eq. (26).

Let me now have a word on the comparison between regions in isolation and regions col-

lectively considered. Of course, regional consumption growth rates differ in the two problem

(compare eq. (12) and (24)). But as far as the difference in growth rates in concerned, the prob-

lem reduces in comparing σ (eq. (13)) with κ (eq. (25)). It is not hard to see that κ > σ if and

only if σ < 1 and θ +σ > 1. In other words, the collective problem lead to a higher difference

in consumption growth rates than the individual problem only in cases III and IV. They corre-

spond to a case where both the intragenerational IA is relatively low (intuitively, a low IA lead

to high differences) and the intergenerational IA is high (counter-intuitively). Let me now go

back to the study of the limits, but for κ only.

L1. Intragenerational utilitarianism: θ → ∞, κ → σ : if the intragenerational IA is nil, the

difference of consumption growth rates depends only on the intertemporal IA and on the

productivity gap (as in the problem of two separated regions).

L2. Intragenerational maximin: θ → 0, κ → 0: if the intragenerational IA is infinite, the

regional consumptions grow at the same rate.

L3. Intergenerational utilitarianism: σ → ∞, κ → θ : if the intergenerational IA is nil, the

difference of consumption growth rates depends only on the intratemporal IA and on the

productivity gap.

L4. Intergenerational maximin: σ → 0, κ → 0: if the intergenerational IA is infinite, the

regional consumptions grow at the same rate.

L1 and L3 corresponds to cases when the ‘distribution of well-being’ does not count in one

dimension. Then the relative sacrifice depends only on the IA of the other dimension. Cases L2

and L4 lead to the same result of an equal evolution of the consumption growth rates, but for

different reasons. In the case L2, the infinite intragenerational IA leads the growth rates to be

as close as possible. While in the case L4, one refrains oneself as much as possible to substitute

a current (lower) consumption for a future (higher) consumption. This leads the growth rates

to be as small as possible, and therefore to be close. In other words, if the IA is infinite in at

least one dimension consumptions evolve at the same rate. If the IA is nil in one dimension, the

12



difference in growth rate depends only on the IA of the other dimension. And finally, if the IAs

are nil in the two dimensions, the social welfare is nearly only supported by the consumption of

the North (low sacrifice) while the South let its stock grow as fast as possible (huge sacrifice).

Consumptions approach a corner solution.16 In this last case, the productivity gap is fully

exploited. It calls even more clearly for a transfer from the North to the South.

Finally, it shall be noted that in case of equal marginal productivities (e.g. if natural renewal

are identical), the IAs play no role and the consumptions grow at the same rate toward their

golden-rule levels.

With the transversality condition, the unique steady state is characterized by (the stability is

shown in the Appendix A)

c??i = Fi

(
XGR

i

)
, F ′S

(
XGR

S

)
= 0 = F ′N

(
XGR

N

)
, W (c??N ,c??S ) =W GR . (27)

Integrating both sides of the equation (25) and using the final consumptions, it comes (as

for the eq. (15))
cN(t)
cS(t)

=
cGR

N

cGR
S

eκ
∫

∞

t (F ′S(XSr)−F ′N(XNr))dr . (28)

This equation helps understanding the evolution of the consumptions through their ratio. Let

me concentrate on cases where κ > 0 (i.e. θ +σ > 1). As long as the stock of the South is more

productive than that of the North, the current ratio is higher than the final ratio and converges

toward it. It shows, more directly, how a more productive stock leads to a higher sacrifice. But

to visualize this feature even more easily, I turn to a graphical representation.

2.4 Graphical representation

Fig. 2 is a four-quadrant plot that represents the different elements. The upper-right quadrant

plots the evolution of the consumption and the stock of the North. Symmetrically, the lower-left

plots these elements for the South. In such a way, the upper-left quadrant plots the consumption

paths. And the lower-right quadrant plots the stock paths.

The upper-right and lower-left quadrants are, individually, similar to a one-sector Ramsey

model.17 They depict a saddle point: consumption has to increase (resp. decrease) if the initial

stock is lower (resp. higher) than the golden-rule stock. For the sake of the representation, I

use the transversality condition (reaching the GR) to project the ċi = 0 curves in the upper-left

quadrant and the Ẋi = 0 curves in the lower-right one. The upper-left and lower-right quadrants

represent then only optimal paths, ending up at the steady state M (corresponding to M′). The

16This limit is easily computable with the notation κ ≡ 1
1−ην

. When η ,ν → 1, κ → ∞.
17It is direct from the eq. (21) and (22), noticing that ψi > 0 is a decreasing function of ci:

∂ψi
∂ci

= ∂ 2W (·)
(∂ci)

2 < 0.
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Figure 2: Global evolutions of the consumptions and the stocks

paths never cross the F ′N = F ′S locus18 (XNM and 0M′), otherwise one would have a steady

state that does not satisfy the transversality condition.19 I conjecture that paths never cross

the curve passing through M (M′) depicting Ẇ = 0 (W = W GR).20 As mentioned before, this

curve represents the as-good-as-golden locus. The hatched area depicts stocks from which

the social welfare decreases toward its steady-state value. More generally, no cycle occurs (in

consumptions or states) since paths cannot cross the ‘critical loci’.

18It is a straight line because I plotted symmetric production functions.
19Approaching the steady state (possibly asymptotically), stock and consumption paths have the same tangent

(by L’Hospital’s rule): limt→∞
dXN
dXS

= limt→∞

F ′N(XN)ẊN−ċN
F ′S(XS)ẊS−ċS

= dcN
dcS

=
cGR

N
cGR

S
.

20A discussion on this point can be found in Samuelson and Solow (1956).
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An example of path is plotted from R′ to M′. It is very similar to a classic path in a Ramsey

model. But we can now better visualize the impact of κ on the consumption ratio, exposed in the

eq. (28). The lower κ , the closer the current ratio to the final ratio. The consumptions path gets

closer and closer to the straight line 0M′. For example, if the IAs are initially low (θ ,σ > 1), the

higher the inequality aversions, the lower the actual inequalities during the convergence. But

the previous explanations showed that this intuitive feature does not always hold.

Finally, let me have a word on the ‘regular’ part (the non-hatched area) of the area B. From

initial stocks in this part, the North has an abundant stock XN0 > XGR
N while the South has

a scarce stock XS0 < XGR
S . Here North shall overshoot its production to decrease toward the

GR, while South shall make classic savings to grow. Clearly, here, we could take a part of the

‘manna’ in North to compensate the sacrifice in South. But how regional sacrifices contribute

to the improvement of the welfare? This is depicted by Green accounting tools.

3 Accounting considerations

During the transition toward the GR, savings are made. One expects therefore an indicator of

sustainability to be increasing. What I interpreted as ‘sacrifice’ at any given date is given by the

difference between the production Fi(Xi) and the current consumption ci, i.e. by the distance

between the current and the sustainable consumption, for Xi < XGR
i . But this difference was

already measured by the evolution of the stocks since Ẋi = Fi(Xi(t))−ci(t). In other words, the

instantaneous sacrifice made by a region is represented by Ẋi and its total instantaneous sacrifice

by XGR
i −Xi0. And, as well-known, the marginal impact of a stock on the value function V is

given by shadow-prices ψi. I study this formally.

In autonomous problems, the optimal Hamiltonian is constant (see e.g. Chiang, 1992, p.

190). The transversality condition (23) implies therefore H opt = 0. The equation (20) can then

be rewritten as

ψNẊN +ψSẊS︸ ︷︷ ︸
Net investment

=W GR−W︸ ︷︷ ︸
Welfare gap

. (29)

Along a rising path, W < W GR, net investment (NI) is positive and is linked to the ‘welfare

distance’. The farther the economy is from the target, the more it has to invest. Each region

makes a contribution of ψiẊi. And investment tends toward zero as W approaches W GR. Once

at the GR is reached (possibly asymptotically) one obtains, in a sense, the Hartwick’s rule

(Hartwick, 1977; Dixit et al., 1980; Withagen and Asheim, 1998).21 Actually, this feature was

already found by Ramsey (1928) himself – it is the ‘genuine’ Keynes-Ramsey rule – and was

restated with exhaustible resource and capital accumulation by d’Autume and Schubert (2008b).

Here, positive, nil and negative investments could be possible according to the initial states.

21This always holds for the as-good-as-golden locus.
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Let me now turn to the final analysis when a unequal treatment is considered.

4 Intra and intergenerational inequity

From a purely positivist view, one may consider treating both regions and generations un-

equally. Actually, Ramsey (1928) himself considered discounting at the end of his paper, while

he strongly rejected it on an ethical ground at the beginning. In the same vein, Koopmans

(1965) used a discount rate to compare discounted and undiscounted versions. At any time, the

discount rate may be nil to come back to the previous case of undiscounted welfare.

Let me follow this approach by considering discounting as well. What represents a higher

weight on current and near welfares than futures ones. What Heal (2009, p. 5) called as “the rate

of intergenerational discrimination”. By the same token, let me also attach different weights on

regions to see if changes happen. These intra and intergenerational weights may be interpreted

as a measure of (procedural) ‘inequity’.

Let aN and aN be now elements of (0,1), still with aN + aS = 1. And let us introduce a

positive discount rate δ . I study only the collective problem, but at any time, recall that letting

θ → ∞ allows to approach individual ones.

The intertemporal welfare is now given by

V d(XN0,XS0) =max
cN ,cS

∫
∞

0
e−δ t

(
W (cN ,cS)−W GR

)
dt ; (30)

subject to the same constraints .

The eq. (24) becomes

ċi

ci
=

θσ

θ +σ −1

(
F ′i (Xi)+

1
θ

Ẇ
W
−δ

)
. (31)

In comparison with the situation without discounting, consumption growth rates are lower. In-

tuitively, if future generations count less, we less need to save in order to increase their welfares.

And less investments lead to a lower growth. Apparently, intragenerational weights do not play

a role here. Indeed, they impact W but they have the same impact on the evolution of the con-

sumptions (same Ẇ
W for both). Actually, they impact the levels of optimal consumptions. To see

this let us rewrite the green accounting equation.

ψNẊN +ψSẊS = e−δ t
(

W GR−W
)
. (32)

As ψi depends positively on ai, the ‘sacrifice sharing’ depends well on those weights. Every-

thing else being equal, a higher weight ai means a lower Ẋi, then a lower sacrifice.
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Interestingly, when the IA is infinite in at least one dimension (L2 or L4), intergenerational

weights (discounting) disappear in the eq. (31).22 They become “immaterial” (d’Autume and

Schubert, 2008b). This feature is well-known in a static framework: when the elasticity of

substitution tends to zero, a CES function tends to the symmetric minimum. This common

feature both in intra and in intergenerational dimensions is not so surprising. Weights (attached

to individuals or generations) guide the priority of resources. But, in parallel, the elasticity of

substitution tells to what extend society is willing to substitute the well-being of an individual

(or generation) for that of another one. When the elasticity tends to zero, substitution are no

longer tolerated. Therefore, whatever the attached weights, the absolute priority is given to the

worst-off. Only in this case, weights do not matter. This is even clearer when θ → ∞ (η → 1):

ċi

ci
= σ

(
F ′i (Xi)−δ

)
. (33)

In the classic so-called ‘Keynes-Ramsey rule’, a nil IES ‘erases’ the discount rate. Let us now

merge the two equations (31), for i = N,S. One still has

ċS

cS
− ċN

cN
= κ

(
F ′S(XS)−F ′N(XN)

)
. (34)

Therefore, the evolution of the inequality between the consumption growth rate in the North

and in the South is robust to both intra and intergenerational ‘inequity’. But as said before, the

levels of consumption are impacted. In particular, the steady state is now characterized by a

lower welfare, the modified golden rule. It is reached when

F ′S (XS) = F ′N (XN) = δ . (35)

That means that the sacrifice shall stop when the marginal productivities are both equal to the

pure rate of time preference. Taken in another way, the discount rate can be chosen so as to

meet any states on the F ′S = F ′N locus, and then limits the global sacrifice. This brings me to my

last discussion.

5 Discussion: Equity, inequality aversion and discount rate

The Ramsey criterion has been criticized for leading to a significant sacrifice of every gen-

eration at the benefit of subsequent ones (Arrow, 1999). As argued by Rawls (1971, p. 287):

“the utilitarian doctrine may direct us to demand heavy sacrifices of the poorer generations

for the sake of greater advantages for later ones that are far better off. But this calculus of

22When θ → 0 discounting disappear but intragenerational weights do still play a (undifferentiated) role on
consumption growth rates through W (L2). But when σ → 0, no weight matter (L4).
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advantages, which balances the losses of some against benefits to others, appears even less

justified in the case of generations than among contemporaries”. But as Rawls (1971, sec. 44)

refrained himself to apply either discounting or the difference principle criterion (‘maximin’)

in an intertemporal perspective, he gave no precise recommendations about the optimal savings

rate.23 And he admitted that “it is not possible, at present anyway, to define precise limits on

what the savings rate should be” (p. 286). To find a solution, some authors prefer to adopt a

consequentialist approach and to discuss the resulting allocation of well-being of a particular

criterion. For example, Zuber and Asheim (2012) allow for weights according to the rank of

generational well-being. This was built up on the “Hammond Equity for the Future” axiom

(Asheim and Tungodden, 2004), which captures the following idea: a sacrifice of the present

for the future is (weakly) desirable if the present stays better-off than the future. In this view,

discounting comes from the expression of inequality aversion if future generation are better-

off (Asheim and Mitra, 2010; Asheim, 2012; Zuber and Asheim, 2012; Asheim and Ekeland,

2016). I see several potential problems with the view of ‘equitable discounting’.

The intratemporal part allows to better understand the distinct role of weights and of the

intragenerational IA. Undesirable consequences from unequal weights can indeed be reduced

with a higher inequality aversion. And when IA is infinite, weights disappear. But why changing

weights rather than the IA? In the present framework, sacrifices may also be reduced by two

ways: with a higher intertemporal IA or with a discount rate. The first option (consider θ > 1 for

simplicity) leads to make regional consumption paths closer when growing toward the GR. The

second option leads to a situation where sacrifice is less needed. And then each generation has

to make a lower sacrifice. Both options may be desirable, but in light of this framework it seems

odd to justify discounting by the IA. By the way, such a practice would be intolerable in the

intragenerational dimension. Also, I find odd that the IA be dependent upon the situation. How

to justify that such a change in the IA arises merely because the situation changed? I think that

linking directly the IA with the specific situation can lead to arbitrary decisions. The underlying

justification that future can benefit from current sacrifice, more than proportionally, does not

seem to justify per se a departure from impartiality (Fleurbaey and Michel, 1999, p. 723).

Besides, if equity requires that something is equalized, I do not see precisely what is equalized

with discounting. That said, resulting allocation of well-being may be worth discussing, but one

needs, I think, another vocable.

Giving the priority to the worst-off individuals because they are worse-off is advocated by

proponents of prioritarianism (Parfit, 1995; Fleurbaey, 2015b). In this view, weights should

23It is sometimes mentioned that Rawls (1971) acknowledged the interest of discounting to avoid sacrifices. But
one shall add that he was in contradiction with the primitive problem. He wrote: “introducing time preference may
be an improvement in such cases; but I believe that its being invoked in this way is an indication that we have
started from an incorrect conception. [. . . ] It is introduced in a purely ad hoc way to moderate the consequences
of the utility criterion” (p. 298).
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be inversely related to the relative initial well-being. Here, in the intertemporal dimension, it

would justify discounting for increasing welfare paths. In the intratemporal dimension, it would

also recommend to give more weight to the South as long as it is less well-off than the North.

I propose to argue that the undiscounted utilitarian criterion is sufficiently malleable to han-

dle different intergenerational inequality outcomes (Fleurbaey and Michel, 1994, 1999; Asheim

and Buchholz, 2007). Which comes back to asking, ultimately, what is the appropriate shape

of the welfare function (Schelling, 1995). But this malleability comes at a price when intratem-

poral issues are taken into account. Even if the difference in relative sacrifices reduces over

time, the inequality may be important during the transition path. Giving the same weight to the

regions turned out to be insufficient.

6 Conclusion

This simple framework enables us to have straightforward insights. When regions have ac-

cess to unequally productive renewable resources, the sacrifice to attain the highest sustainable

level of welfare – the golden rule – is not evenly shared. Basically, the region which is endowed

with a lower stock, South, has to make a higher sacrifice than the other one, North. The intu-

ition behind this startling result is that the resource of the South, being lower than that of the

North, is marginally more productive. The same sacrifice leads then to a higher return in the

South than in the North. The difference in regional growth rates depends generally positively

on the productivity gap, and negatively on the intratemporal and the intertemporal inequality

aversions. The sacrifice for reaching the golden rule is evenly shared only in three cases. (1) If

the marginal productivities are equal, because one cannot take advantage of differences of the

two regions. (2) If the intratemporal inequality aversion is infinite, because one does not want

to take advantage of differences of the two regions. (3) If the intertemporal inequality aversion

is infinite, because one does not want to make sacrifice. The (original) Keynes-Ramsey rule

holds in this framework: the farther the economy is from the golden rule, the more it has to

invest. At the end, unequal weights put on regions and on generations were considered. I came

to two conclusions. (i) Discounting cannot be advocated on the sole basis of the willingness to

limit sacrifices. (ii) Intratemporal weights do not play a fundamental role in the relative regional

growth rates.

The main conclusion of this model, based on the most efficient way to share sacrifice in

order to grow toward the golden rule, can be difficult to hear in the real world. Both from an

ethical and a pragmatic view, such a policy can only be implemented with transfers from the

North to the South.
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A Stability of the steady state

Let me sum up the necessary conditions into three main equations to get the following

dynamic system, with Y ≡ ln
(

cS
cN

)
;


ẊN = FN(XN)− cN ;

ẊS = FS(XS)− cS ;

Ẏ = κ
(
F ′S(XS)−F ′N(XN)

)
.

(36)

Steady states are characterized by (using the transversality condition)
cGR

N = FN
(
XGR

N
)

;

cGR
S = FS

(
XGR

S

)
;

F ′N
(
XGR

N
)

= F ′S
(
XGR

S

)
.

(37)

Consider the Jacobian matrix of the linearized system, evaluated at the steady states24

J? =


F ′N 0 αN

0 F ′N −αS

−κF ′′N κF ′′S 0

 ; (38)

with αN ≡−∂cN
∂Y

∣∣∣∣
cGR

N ,cGR
S

=
(cGR

S )
2

cGR
N

> 0 and αS ≡ ∂cS
∂Y

∣∣∣∣
cGR

N ,cGR
S

= cGR
S > 0.

Let us compute the roots of the characteristic polynomial P(λ ) = det
(
JGR−λ I3

)
:

(
F ′N−λ

)(
−
(
F ′N−λ

)
λ +καNF ′′N +καSF ′′S

)
= 0 . (39)

The first eigenvalue is λN = F ′N . Let Γ ≡ −κ
(
αNF ′′N +αSF ′′S

)
> 0. I can reduce the eq. (39)

to λ 2−F ′Nλ −Γ = 0. Eigenvalues are then λN = F ′N > 0, λS =
F ′N−
√

(F ′N)
2+4Γ

2 < 0, and λ3 =
F ′N+
√

(F ′N)
2+4Γ

2 > 0.25 The steady state is a (classic) saddle-point.

24We use the equality F ′N = F ′S and express the Jacobian with respect to F ′N only.
25Notice that strict concavity of production functions rule out nil eigenvalues.
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