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Abstract

In this paper, I investigate how to tax the different sources of income of taxpayers. I con-
sider on optimal nonlinear income tax model with many sources of income. I first exhibit
a specification where the optimal tax system consists in a nonlinear schedule that applies
to the sum of all income - a comprehensive income tax system - and another specification
where the optimal tax system consists in a nonlinear schedule specific to each income - a
separate income tax system. In the more general environment I specialize the tax schedule
to be combination of these two polar systems: the tax system is restricted to be the sum of a
comprehensive personal income tax schedule and of income specific tax schedules, I derive
an optimal ABC formula for each of these schedules. I also derive a condition expressed in
terms of empirically meaningful sufficient statistics under which decreasing the indexation
of the personal income tax base on one income and compensating the revenue loss with a
lump-sum or a proportional increase in the taxation of that income is socially desirable.

Keywords: Nonlinear Income Taxation. Dual Income Tax, Comprehensive Income Tax

I Introduction

Taxpayers receive different kinds of incomes such as labor income, interest income, divi-

dends, capital gains or losses, business income, rents or imputed rents. There exist two polar

system to tax these different incomes. Under a comprehensive income tax system, tax liability is

a function of the sum of all of these incomes. Conversely, under a separate income tax system,

each income is taxed according to an income-specific schedule. A particular case of separate

income tax system is the dual income tax where capital income is excluded from the personal

income tax base and taxed under a specific proportional schedule. Sweden in 1991, Norway

in 1992, Finland in 1993, Spain in 2006 and Germany moved to a dual tax system by exiting a

large part of their capital income from the personal income tax base. Denmark has now a mixed

system (Kleven and Schultz, 2014). In France, dividends were taxed in a dual way from 2007 to
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2012, and France has now opted for dual taxation of capital income since 2017. In Netherlands,

the 2001 reform moved from the personal income tax from a comprehensive system to a sepa-

rate system where incomes financial wealth are exited from the personal income tax base and

welath taxed applies to financial wealth (Zoutman, 2018).

There exist informal arguments in favor or against the move to a separate income tax system

(e.g. Boadway (2004)).

• On the one hand, a separate income tax system enables the government to shift the bur-

den of taxation to the least responsive tax base. I refer to this argument as the Ramsey

(1927) argument because it focuses on the best way to shift the burden of redistribution

across the different tax bases, just as the Ramsey (1927) optimal formula describes the

optimal way to shift the burden of taxation across the different commodities. In practice,

thanks to dual taxation, Nordic countries succeed in keeping a very progressive personal

income tax with high marginal tax rates without harming saving and investment.1

• On the other hand, a separate income tax system triggers incentives for income shifting,

especially for business and self-employed incomes.

• Moreover, by reducing capital tax rate and keeping high tax rates on labor earnings, mov-

ing to a separate income tax benefit high capital earners which is frequently viewed as

unfair.

While these reforms generate huge controversies in policy-advising arena and many em-

pirical evaluations, the arguments in favor or against a separate income tax system remain

informal. In this paper, I develop an optimal tax model with different income to investigate

when a (more) separate, a (more) comprehensive tax schedule is desirable.

I start in Sections III and IV by providing two specialization of the model where I can char-

acterize the tax schedule that decentralizes the allocation that solves the optimal multidimen-

sional screening problem.

In Section III, I assume individuals are endowed with weakly separable preferences. This

very specific assumption implies that all taxpayers make the same decisions when deciding

how to split their efforts across the different tax bases to get a given level of total income. In

such a case, I show that a comprehensive tax schedule is sufficient to decentralize the optimal

allocation. The argument is similar to the argument in Atkinson and Stiglitz (1976) against

commodity taxation: distorting the choice of efforts across the different tax bases is useless

because this does not relax the equity-efficiency trade off under weakly separable preferences.

I then consider in Section IV a specialization where unobserved heterogeneity is one-dimensional

and preferences are quasilinear and additively separable. Under these specific assumptions, as

high labor income earners are also high capital income earners, whether the burden of taxation

1Moreover, a dual income tax system is much simpler to enforce as the tax liability of one income does no longer
depend on the other incomes. Enforcement costs is a frequent argument in practice that is not considered in the
present paper.
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should be imposed on labor or on capital is solely an efficient concern, without any equity im-

plication. The one dimensional assumption thus ensures the validity of the above-mentioned

Ramsey (1927) argument. In such a situation, the government wants to adapt the marginal

tax rate specific to each income to the tax responsiveness specific to this tax base. Moving

away from the comprehensive income tax is then necessary to adjust the marginal tax base to

its responsiveness. The assumptions of quasilinear and additively separable preferences then

guarantees the separate income tax system is sufficient to decentralize the optimal allocation.

These two specializations are much too specific to be empirically plausible. They are useful

to formalize under which conditions the pros and cons of each polar system are valid. They

are also useful to show that none of these two polar system is generically optimal. Turning to

the more general case, to bypass the technical difficulty of multidimensional screening (Mir-

rlees, 1976, Golosov, Tsyvinski, and Werquin, 2014, Renes and Zoutman, 2017, Spiritus, 2017),

I restrict in Section V the tax schedules to be the sum of a comprehensive personal income tax

schedule T0(·) and of n income specific tax schedules (see Equations (8) and (9) below). While

theoretically restrictive, this assumption approximate fairly well most of actual tax systems in

OECD. Moreover, most of tax reforms on policymakers’ agenda can be considered within the

class of tax schedules that I consider. I then obtain two important results.

First, I derive optimal marginal tax rate formulas which are specific to each income (includ-

ing the comprehensive taxable income), See Equation (29). These formulas extend the formulas

of Diamond (1998) and Saez (2001) for the existence of different incomes. It clarifies that cross

base effects have to be taken into account. This is because a change in the marginal tax rate on

one income also triggers responses of the other incomes, which in turn affect tax revenue.

Second, I investigate the effect of a reform that changes the indexation of the personal tax-

able income on a given income. Such a reform is an incremental move towards a more separate

or a more comprehensive tax system. On the top of mimicking an uncompensated change in

the marginal tax rate, such a reform also affects the personal income tax base, which in turns

change the marginal tax rate associated to each tax base, which finally induces compensated

responses. I then consider the effects of a reform that consists in marginally exiting an income

from the personal income tax base and by compensating the loss in tax revenue by a propor-

tional tax on this income. Such incremental tax reform is typically the way policymakers thinks

about financing reforms towards a more separate income tax system. If the personal income

tax schedule was linear, such effect would be neutral. Conversely, when the personal income

schedule is progressive, I derive a formula that states under which conditions in terms of em-

pirically meaningful sufficient statistics such a reform is socially desirable.

Literature review to be added (very preliminary text)

This under-progress paper is organized as follows. The model is presented in Section II. Sec-

tion III describes a case where the optimal tax schedule is comprehensive. Section IV describes

a case where the optimal tax schedule is separate. Finally, Section V consider in the more gen-
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eral case the effects of incremental reforms towards a more separate or a more comprehensive

tax system.

II The Economy

II.1 Taxpayers

The economy is populated by a unit mass of taxpayers characterized by different types de-

noted w belonging to the type space W. Individuals take n ≥ 2 different actions, which are

costly to them. Each action generates a specific income denoted yi, which is observable by the

government. For instance, y1 can be salary income, y2 business income, y3 dividends, etc. Let:

y = (y1, ..., yn) denote the vector of incomes or tax bases earned by a taxpayer. The preference

of individuals of type w over after-tax income c (hereafter consumption) and tax base y is de-

scribed by the utility function U : (c, y; w) 7→ U (c, y; w), which is assumed twice continuously

differentiable over Rn+1
+ ×W. Utility increases in consumption so Uc > 0, decreases in efforts,

thereby in income, so Uyi < 0. Let:

S i(c, y; w)
def≡ −

Uyi(c, y; w)

Uc(c, y; w)
(1)

denote the marginal rate of substitution between the ith income and consumption. I assume

that indifference curves are convex. This implies that the matrix2
[
S i

yj
+ S i

cS j
]

i,j
is positive

definite (see Appendix A).

Types are distributed according to the continuously differentiable density function f : w 7→
f (w), which is defined over the convex type space W. Unless otherwise specified, types corre-

sponds to n ≥ 2 different characteristics denoted w1, ..., wn, so w = (w1, ..., wn). The type space

is denoted W and is a convex.

The government imposes a tax schedule T : y = (y1, ..., yn) 7→ T (y1, ..., yn) that depends

on each of these incomes. Hence, the after-tax income c of a taxpayer earning tax bases y is:

c = ∑n
i=1 yi − T (y1, ..., yn). Taxpayer of type w solves:

U(w)
def≡ max

y=(y1,...,yn)
U

(
n

∑
k=1

yk − T (y1, ..., yn) , y; w

)
(2)

I assume (see Assumption 1 discussed in II.3) that for each type w ∈ W, this program

admits a single solution denoted Y(w) = (Y1(w), ..., Yn(w)). Individuals of type w consume

C(w) = ∑n
i=1 Yi(w)− T (Y(w)) and enjoy utility level U(w) = U (C(w), Y(w); w). The first

order-conditions are:

∀i ∈ {1, ..., n} : 1− Tyi(Y(w)) = S i (C(w), Y(w); w) (3)

2I use notation
[

Ai,j

]
i,j

to denote a square matrix of size n whose term of row i and column j is Ai,j. Superscript

T denotes the transpose operator
[

Ai,j

]T

i,j
=
[

Aj,i

]
i,j

. Matrix
[

Ai,j

]−1

i,j
is the inverse of matrix

[
Ai,j

]
i,j

and "·" denotes

the matrix product.
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Finally, h(y) denotes the joint density of tax bases y = (y1, ..., yn), while for each type of

income, hi(yi) denotes the unconditional density of the ith income.

II.2 Government

The government faces the following budget constraint:

E ≤ B
def≡
∫

w∈W
T (Y(w)) f (w)dw (4)

where B stands for the tax revenue and where E ≥ 0 is an exogenous amount of public expen-

diture to finance. The government’s objective sums an increasing transformation Φ of taxpay-

ers’ individual utility U(w) that may be concave and type-dependent:

O
def≡
∫

w∈W
Φ (U(w); w) f (w)dw (5)

When the government is utilitarian, the social transformation is Φ(U, w) = U and is linear.

When the government has weighted utilitarian preferences, the social transformation takes the

form Φ(U, w) = γ(w) U. When the government has Bergson-Samuelsonian preferences, the

social transformation does not depend on type and is concave in U.

There are different specialization of tax schedules that will be considered in this paper.

Comprehensive Income Tax system

The tax schedule is said to be comprehensive if it takes the form: T (y) = T (∑n
k=1 yk) where

T(·) is defined on R+. The marginal tax rate on each income is then identical, so the first-order

conditions (3) simplify to:

1− T′
(

n

∑
k=1

Yk(w)

)
= S1 (C(w), Y(w); w) = ... = Sn (C(w), Y(w); w) (6)

In particular, the marginal rate of substitution Uyi /Uyj = S i/S j between the ith and the jth in-

come is equal to one and is unaffected by taxation under a comprehensive income tax schedule.

In other words, the comprehensive tax system does not distort how taxpayers shift their effort

among the different tax bases.

Separate Income tax system

The tax schedule is said to be separate if it takes the form: T (y) = ∑n
k=1 Tk (yk) where the

Tk(·) schedules are defined on R+. The marginal tax rate on each income then depends only

on this income (i.e. Tyiyj = 0 if i 6= j), so the first-order conditions (3) become:

∀i ∈ {1, ..., n} 1− T′i (Yi(w)) = S i (C(w), Y(w); w) (7)

In other words, with a separate income system, the distortions induced by the tax system on

each tax base are independent.
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Mixed tax system

I also consider a mixed tax system where the tax schedule is assumed to be the sum of a

personal income tax schedule T0(·) and of n income specific tax schedules Ti(·):

T (y) = T0

(
n

∑
k=1

ak yk

)
+

n

∑
k=1

Tk(yk) (8)

The personal income tax schedule T0(·) depends on the personnal income tax base or taxable

income denoted y0 and I denote Y0(w) = ∑n
k=1 ak Yk(w). Not all incomes are included in the

personal income tax base, and not all income are necessarily fully included in the personal

income tax base. For instance, in most OECD countries, it is not primary labor income paid

by employers that enters the personal income tax base but labor income after the payment of

(employers) social security contributions. Therefore, if y1 denote primary labor earnings, a1y1

denotes taxable labor earnings net of payroll taxes. Similarly, when dividends are included in

the personal income tax base, these dividends have previously been taxed though corporate

taxation. Hence, if y2 denotes the primary profits earned by a taxpayer, a2y2 denotes taxable

dividends, etc. These are the reasons why I consider that the personal income tax base is de-

fined by:

y0
def≡

n

∑
k=1

ak yk (9)

where each ai is a policy instruments that captures how much taxable income y0 depends on

the ith income. Each ai takes a value between 0 and 1.3

Moreover, the tax system is also made of n income-specific tax schedules Ti(·). These sched-

ules add taxes paid by firms and by households on a given tax base.

Under the tax schedule (8), the marginal tax rate on the jth income adds the marginal tax

rate T′j (yj) of the schedule specific to this income plus aj times the marginal tax rate T′0(y0) of

the personal income tax schedule:

Tyj(y) = T′j (yj) + aj T′0

(
n

∑
k=1

ak yk

)
(10)

Therefore all incomes affects the jth marginal tax rate through the determination of the taxable

income y0 in (9).

While restrictive, the form of tax schedules in (8) approximate fairly well most of tax sys-

tems in OECD economies. It includes the specific case where the tax schedule is purely compre-

hensive, in which case a1 = ... = an = 1 and for all i, yi 7→ Ti(yi) ≡ 0 and the case where the tax

schedule is purely separate, in which case y0 7→ T0(y0) ≡ 0.

3There is a normalization issue as for any λ, one can reproduce the same personal income tax with parameter

âi = aiλ and personal income tax schedule y 7→ T̂(∑n
k=1 âkyk) defined by y0 7→ T̂(y0)

def≡ T0(y0/λ)
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II.3 Responses to tax reforms

To analyze the consequences of infinitesimal tax reforms I follow the tax perturbation ap-

proach of Golosov, Tsyvinski, and Werquin (2014).4 This consists in considering various one-

dimensional families of perturbed tax schedules called a perturbation.

Definition 1. A tax perturbation is a twice continuously differentiable mapping (y, x) 7→ T̃ (y, x)

defined over Rn
+ × I, where x denotes the algebraic magnitude of a tax reform and I is an open interval

containing 0 such that:

• For all y ∈ Rn
+, one has T̃ (y, 0) = T (y).

• After a tax reform of magnitude x, taxpayers face the tax schedule y 7→ T̃ (y, x)

There are different examples of tax perturbations that are of particular interest. First, the

lump-sum tax perturbation:

T̃ (y, x) = T (y)− x (11a)

consists in a lump-sum transfer x to every taxpayers.

Second, the compensated tax perturbation of the jth marginal tax rate at tax base Y(w):

T̃ (y, x) = T (y)− x
(
yj −Yj(w)

)
(11b)

consists in increasing by x the jth marginal net of tax rate 1− Tyj , while leaving unchanged tax

liability at y. Such a reform is compensated at tax base Y(w) because tax liability is unchanged

at y = Y(w), whatever the magnitude x.

The uncompensated tax perturbation of the jth marginal tax rate:

T̃ (y, x) = T (y)− x yj (11c)

consists in increasing by x the jth marginal net of tax rate 1− Tyj without any lump sum com-

pensation.

More generally, a tax perturbation in the direction R : y 7→ R(y) is defined by:

T̃ (y, x) = T (y)− x R (y) (11d)

Finally, a tax perturbation of the ith tax base is defined by:

T̃ (y, x) = T (y1, ..., yi−1, (1 + x)yi, yi+1, ..., yn) (11e)

For each tax perturbation, we want to compute the derivative of economic magnitude with

respect to x at x = 0, i.e. for any economic variable X, computing

∂X
∂x

∣∣∣∣
x=0

def≡ lim
x 7→0

X|T̃ (·,x) − X|T (·)
x

4See also Hendren (2017). An heuristic version of the tax perturbation approach has been exposed by Piketty
(1997) and Saez (2001). An earlier application to linear commodity taxation is exposed in Christiansen (1981).
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This notation is obviously meaningful only once the tax perturbation T̃ (·, ·) behind is made

explicit. To compute such derivatives, we want to apply the implicit function theorem to the

first-order conditions in (3). We thus consider only tax schedules that verifies the following

assumption.5

Assumption 1. The tax schedule y 7→ T (y) is such that:

i) The tax schedule is twice continuously differentiable.

ii) The second-order condition holds strictly, that is matrix
[
S i

yj
+ S i

cS j + Tyiyj

]
i,j

is positive definite.

iii) For each type w ∈W, program (2) admits a single global maximum.

Part i) of Assumption 1 ensures that first-order conditions (3) are differentiable in tax base

y. It in particular rules out kinks, thereby bunching.6 Parts i) ii) of Assumption 1 ensures

that the implicit function theorem can be applied to first-order conditions (3) to ensure that

each local maximum of y 7→ U (∑n
k=1 yk − T (y) , y; w) is differentiable in type w and in the

magnitude x of a tax perturbation. However, if this mapping admits different global maximum

among which a tax payer is indifferent, a small tax reform may trigger a jump of taxpayers with

type very close to w from a bundle close to one of this maximum to a bundle close to another

global maximum. Such jumping response prevents w 7→ Y(w) from being differentiable in the

magnitude of the tax perturbation and in types. Part iii) of Assumption 1 is precisely intended

to prevent this kind of "jumping" behavior.

Because the indifference curves are convex (See Appendix A), Assumption 1 is automat-

ically satisfied when the tax schedule is linear, or when the tax schedule is weakly concave.

It is also satisfied when the tax schedule is not “too" convex, so that y 7→ ∑n
k=1 yk − T (y) is

less convex than the indifference curve with which it has a tangency point in the (y, c)-space

(so that Part ii) of Assumption 1 is satisfied) and that this indifference curve is strictly above

y 7→ ∑n
k=1 yk − T (y) for all other y (so that Part iii) of Assumption 1 is satisfied). In the same

spirit than the first-order mechanism design approach of Mirrlees (1971, 1976), we presume

the optimal tax schedule verifies Assumption 1 and derive optimality conditions under this

presumption. This presumption has then to be checked ex-post.

We can then define behavioral responses. Let then denote by ∂Yi(w)
∂ρ the behavioral responses

with respect to the lump sum tax perturbation defined in (11a). Let ∂Yi(w)
∂τj

denote the com-

pensated responses with respect to the compensated tax perturbation with respect to the jth

5Hendren (2017) assumes instead that government’s income B is differentiable in x, which enables some “jump-
ing responses" for zero measure of taxpayers. Golosov, Tsyvinski, and Werquin (2014) assumes that for each type
w, Y(w) is Lipschitz continuous in x.

6In practice, most of real world tax codes are made of different piecewise linear tax schedules with kinks between
two consecutive brackets (A noticeable exception being the personal income tax schedule in Germany). In theory,
these kinks should induce bunching or gap in the corresponding income distribution. In reality, bunching at convex
kink points are less frequent than theoretically expected (see however Saez (2010) which can be viewed as a counter-
example) and gaps in the income distributions at concave kink points have not been documented empirically, to
the best of my knowledge. One interpretation is very low behavioral elasticities. Another explanation that is much
more plausible to me is that taxpayers do not optimize with respect to actual tax schedules, but with respect to
smooth approximation of actual tax schedules (for instance y 7→

∫
T (y + u)dΨ(u) where u is an n-dimensional

random shock on incomes with joint CDF Ψ) which do verify part i) of Assumption 1.
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income at tax base y = Y(w) as defined by Equation (11b). Note that these responses are total

in the sense that they take into account that the nonlinearity of the tax schedule trigger further

changes in marginal tax rates that trigger in turn further behavioral responses. Appendix B

shows that the matrix of compensated responses is given by:[
∂Yi

∂τj

]
i,j
=

([
S i

yj
+ S i

cS j + Tyiyj

]
i,j

)−1

(12)

and is thereby symmetric, so that ∂Yi
∂τj

=
∂Yj
∂τi

. Importantly, this matrix is generically not diagonal

so cross base responses (i.e. ∂Yi
∂τj

for i 6= j) can generically not be ruled out.7 The vector of income

responses is given by:(
∂Yi

∂ρ

)T

= −
([
S i

yj
+ S i

cS j + Tyiyj

]
i,j

)−1

· (S1
c , ...,Sn

c )
T (13)

If the ith income is a normal bad, one has ∂Yi
∂ρ < 0. Applying the Slutsky relation, the uncompen-

sated response of the ith income to the jth net-of-marginal tax rate is given by:

∂Yi
u(w)

∂τj
=

∂Yi(w)

∂τj
+ Yj(w)

∂Yi(w)

∂ρ
(14)

A tax perturbation affects the first-order conditions (3) through changes in marginal net of

tax rates 1− Tyj , which trigger compensated responses, and through the change in tax liability,

which triggers income response. Appendix B shows that the behavioral response of the ith

income to a tax perturbation is therefore given by:

∂Yi(w)

∂x

∣∣∣∣
x=0

= −
n

∑
j=1

∂Yi(w)

∂τj

∂T̃yj(Y(w), 0)
∂x

∣∣∣∣∣
x=0︸ ︷︷ ︸

Compensated responses

− ∂Yi(w)

∂ρ

∂T̃ (Y(w), 0)
∂x

∣∣∣∣
x=0︸ ︷︷ ︸

Income responses

(15)

The tax liability response of a given type of individual can be decomposed into mechanical

effects, absent any change in tax base, and behavioral effects induced by the responses described

in (15):

dT̃ (Y(w), x)
dx

∣∣∣∣
x=0

=
∂T̃ (Y(w), x)

∂x

∣∣∣∣
x=0︸ ︷︷ ︸

Mechanical effects

+
n

∑
i=1
Tyi(Y(w))

∂Yi(w)

∂x

∣∣∣∣
x=0︸ ︷︷ ︸

Behavioral effects

(16)

Combining the latter Equation with (15), the effect of a tax perturbation on government’s rev-

enue (4) is given by:

∂B

∂x

∣∣∣∣
x=0

=
∫

w∈W

{[
1−

n

∑
i=1
Tyi(Y(w))

∂Yi(w)

∂ρ

]
∂T̃ (Y(w), 0)

∂x
(17)

− ∑
1≤i,j≤n

Tyi(Y(w))
∂Yi(w)

∂τj

∂T̃yj(Y(w), 0)
∂x

∣∣∣∣∣
x=0

}
f (w)dw

7Consider for instance the case where preferences are quasilinear and additively separable, so that U (c, y; w) =

c−∑n
k=1 υk(yk; w). Then, matrix

[
S i

yj
+ S i

cS j
]

i,j
is diagonal. However, this does not imply that the matrix of com-

pensated responses is diagonal because Tyiyj 6= 0 for i 6= j unless the tax function is separate.
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Let λ > 0 denote the shadow cost of public fonds and let:

g(w)
def≡

ΦU(U(w); w) Uc

(
n
∑

i=1
Yi(w)− T (Y(w)) , Y(w); w

)
λ

(18)

denote the social marginal weight of consumption expressed in monetary term (hereafter the

social weight) that the government assigns to taxpayer of type w. The government values g(w)

Euros the welfare increase of taxpayers of type w induced by a transfer of one Euro.8 Ap-

plying the envelope theorem to (2), the effect in monetary terms of a tax perturbation on the

government’s social objective is given by (see Appendix B):

1
λ

∂O

∂x

∣∣∣∣
x=0

= −
∫

w∈W
g(w)

∂T̃ (Y(w), 0)
∂x

∣∣∣∣
x=0

f (w)dw (19)

The shadow cost of public fonds λ corresponds to the effects on the social objective of a

lump-sum transfer to every taxpayers. Combining (17) and (19) for the lump-sum perturbation

(11a), the shadow cost of public funds is pined down by:

0 =
∫

w∈W

[
1− g(w)−

n

∑
i=1
Tyi(Y(w))

∂Yi(w)

∂ρ

]
f (w)dw (20)

A tax perturbation is generically not budget-balanced, unless ∂B
∂x

∣∣∣
x=0

= 0. Therefore, one

wants to evaluate not only the effects of a tax perturbation on welfare, but the effects of a tax

perturbation which is combined with the lump-sum rebate of the budget surplus, as the latter

perturbation is budget-balanced. The next Lemma, which is proved in Appendix C shows the

welfare effect of such combination of tax perturbation is of the same sign as the effect of the

initial budget-unbalanced tax perturbation on the government’s Lagrangian L
def≡ B + O/λ,

provided the shadow cost of public funds verifies (20). Combining (17) and (19), this effect is

given by:

∂L

∂x

∣∣∣∣
x=0

=
∫

w∈W

{[
1− g(w)−

n

∑
i=1
Tyi(Y(w))

∂Yi(w)

∂ρ

]
∂T̃ (Y(w), 0)

∂x

∣∣∣∣
x=0

(21)

− ∑
1≤i,j≤n

Tyi(Y(w))
∂Yi(w)

∂τj

∂T̃yj(Y(w), 0)
∂x

∣∣∣∣∣
x=0

}
f (w)dw

Lemma 1. If the shadow cost of public funds verifies (20), and if ∂L
∂x

∣∣∣
x=0

> (resp <) 0, then reforming

the tax schedule to y 7→ T (y, x) with a small positive x (resp. a small negative x) and rebating the

budget surplus in a lump-sum way is a budget-balanced reform that is socially desirable.

Lemma 1 provides a condition on behavioral elasticities, type distribution and welfare

weights for the a given tax perturbation to be social desirable. Finally, when types are n −
dimensional, we get: (see Appendix B):[

∂Yi

∂wj

]
i,j
= −

[
∂Yi

∂τj

]
i,j
·
[
S i

wj

]
i,j

(22)

8See Saez and Stantcheva (2016) for non-welfarist microfoundations of these welfare weights.
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This equation is very important because it relates behavioral responses, which are at the hart

of tax perturbations analysis, to the derivatives S i
wj

of marginal rates of substitution with re-

spect to types, which are at the hart of mechanism design analysis. We make the following

assumption on preferences:

Assumption 2. For each bundle (c, y), the mapping w 7→
(
S1(c, y; w), ...,Sn(c, y; w)

)
is invertible

This assumption on preferences extends the usual single-crossing condition to the multidi-

mensional context. It is for instance verified when preferences are additively separable of the

form:

U (c, y; w) = u(c)−
n

∑
i=1

υi(yi, wi) with : u′, υi
yi

, υi
yiyi

> 0 > υi
wi

, υi
yiwi

Assumption 2 not only implies that matrix
[

∂Yi
∂wj

]
i,j

is invertible. It also implies that the mapping

y 7→ Y(w) is globally invertible.9 We thus get the following relation between the skill density

and the tax base density:

h(Y(w)) =
f (w)∣∣∣∣det
[

∂Yi
∂wj

]
i,j

∣∣∣∣ (23)

III A case where the Optimal Income Tax is Comprehensive

In this section, we exhibit a situation where the optimal allocation can be decentralized by

a comprehensive income tax schedule. The Following Proposition is proved in Appendix D.

Proposition 1. If preferences are weakly separable, i.e. the utility function U takes the form U (c, y; w) =

U (c,V(y); w) where Uc,Uwi > 0 > UV , V(·) is twice continuously differentiable, increasing in each

argument and convex, then the optimal tax is comprehensive.

The intuition for this result is in the spirit of the theorem of Atkinson and Stiglitz (1976) and

of its proof by Laroque (2005) and Gauthier and Laroque (2009). Because of weakly separable

preferences, whatever their type, individuals choose how to split their efforts in getting the

different tax base to minimize the same aggregation V(·) of incomes, while the government

is only interested in the resources to be shared, i.e. on the sum of all incomes earned by each

individual. In particular, the marginal rate of substitution between two different tax bases does

not depend on type as it verifies:

Uyi(c, y; w)

Uyj(c, y; w)
=
Vyi(y)
Vyj(y)

9That matrix
[

∂Yi
∂wj

]
i,j

is invertible only implies that w 7→ Y(w) is locally invertible. Assume by contradiction

the existence of two types w, w′ such that that Y(w) = Y(w′) = y. We thus get C(w) = C(w′) = ∑n
k=1 Yk(w)−

T (Y(w)) = c. According to the first-order conditions (3), we get:(
1− Ty1 (y), ..., 1− Tyn (y)

)
=
(
S1(c, y; w), ...,Sn(c, y; w)

)
=
(
S1(c, y; w′), ...,Sn(c, y; w′)

)
Assumption 2 therefore implies that w = w′, which ends the proof that y 7→ Y(w) is globally invertible.
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Therefore, the government does not need to distort the relative supply of each tax base. A

comprehensive tax schedule is therefore optimal.

It is however worth noting that weakly separable preferences does not verify the single

crossing assumption 2. When the tax schedule is comprehensive, the program of individuals

of type w can be decomposed into two consecutive stages:

max
v

U

v−T (v), min
y s.t:

n
∑

i=1
yi=v

V(y); w


Therefore, people earning the same taxable income v = ∑n

i=1 yi make the same choice (y1, ..., yn).

Hence each taxpayers receiving the same amount of the ith tax base also receive the same jth

income, a prediction that is clearly counter-factual.

The case of weakly separable preference should thus only be understood as an example

illustrating when a comprehensive tax schedule is desirable. Conversely, we guess that when

the marginal rate of substitution across different tax base vary with types, as it assumed by

Assumption 2, the optimal tax schedule is no longer comprehensive.

IV A case where the Optimal Income tax is Separate

I now consider a different specialization where the optimal tax schedule is separate. The

following Proposition is proved in Appendix E.

Proposition 2. When i) the type space is one-dimensional W = [w, w] ⊂ R, ii) along the optimal allo-

cation, each income admits a positive derivative with respect to type and iii) preferences are quasilinear

and additively separable of the form:

U (c, y; w) = c−
n

∑
i=1

υi(yi; w) with υi
yi
(yi; w), υi

yi ,yi
(yi; w) > 0 > υi

yi ,yi
(yi; w)

the optimal tax schedule is separate.

Intuitively, when the unobserved heterogeneity is one-dimensional and the different kind

of incomes are increasing in type, redistribution is a single dimension problems from high

types agents, earning high levels of all incomes, to low types agents earning low levels of

all incomes. The government is therefore interested in achieving the same redistributive goal

by shifting the burden of redistribution on the least responsive tax base. Under quasilinear

preference and additive separable preference, the government can simply achieve this objective

of shifting distortions on the least responsive tax base by a separate income tax because with

such preference, the choice of each income depends on the tax schedule only through its own

marginal tax rate. This because under such preferences, there is neither income effects nor cross

base substitution effects.

Again, the assumption of Proposition 2 are very specific. In general, income effects and

cross base substitution effects can not be empirically ruled out. Moreover, the one dimensional
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assumption induces that realized tax bases describes a one-dimensional manifold, which is

is clearly counter-factual. So, tis configuration should more be understood as a theoretical

curiosity to help understanding when the separate income tax is desirable instead of a relevant

policy recommendation.

V Infinitesimal reforms of mixed tax schedules

In this section, I consider general preferences but I restrict the tax schedule to be of the

mixed for given in Equation 8. I first characterize the response of taxable income y0. I show in

Appendix F that the responses of the personal income tax base to a lump sum perturbation is

given by:
∂Y0(w)

∂ρ
=

n

∑
k=1

ak
∂Yk(w)

∂ρ
(24)

while the response of the personal income tax base to a compensated tax change in the jth

marginal tax rate is given by:
∂Y0(w)

∂τj
=

n

∑
k=1

ak
∂Yk(w)

∂τj
(25)

and the response of the personal income tax base to an uncompensated tax change in the jth

marginal tax rate is given by:
∂Y0

u(w)

∂τj
=

n

∑
k=1

ak
∂Yk

u(w)

∂τj
(26)

I now consider the effects of a tax perturbation T̃ (y, x) = T (y)− x Ri(yi) specific to the ith

income, where Ri(·) is the direction of the tax reform. Such a perturbation modifies tax liability

by:
∂T̃ (Y(w))

∂x

∣∣∣∣
x=0

= −Ri(Yi(w))

It modifies the marginal tax rate on the ith marginal tax rate by:

∂T̃yi(Y(w))

∂x

∣∣∣∣∣
x=0

= −R′i(Yi(w))

And it does not affect the other marginal tax rate. Using Equation (21), the effect of such per-

turbation on the Lagrangian is (see Appendix F.1):

∂L

∂x

∣∣∣∣
x=0

=
∫

w∈W

{[
g(w)− 1 +

n

∑
k=0

T′k(Yk(w))
∂Yk(w)

∂ρ

]
Ri(Yi(w)) (27)

+

[
n

∑
k=0

T′k(Yk(w))
∂Yk(w)

∂τi

]
R′i(Yi(w))

}
f (w)dw

Equation (27) summarizes the first-order effect of a perturbation of the taxation of the ith

income on the government’s Lagrangian. For individuals of type w such reforms induce a

change −Ri(Yi(w)) in tax liability and a change R′i(Yi(w)) in the ith net of marginal tax rate.

The change in tax liability induces a mechanical effect on tax revenue and on the government’s

13



objective, the latter being weighted by the social welfare weight g(w). Hence the mechanical

effect is equal to −(1− g(w))Ri(Yi(w)) times the density of taxpayers of type w. The change

in tax liability also induces income responses ∂Yk
∂ρ Ri(Yi(w)) for all incomes k ∈ {0, ..., n}, which

trigger a change in tax revenue equal to ∑n
k=0 T′k(Yk(w)) ∂Yk

∂ρ Ri(Yi(w)) times the density. Fi-

nally, the change R′i(Yi(w)) in the ith net of marginal tax rate triggers compensated responses
∂Yk
∂τi

R′i(Yi(w)) for all incomes k ∈ {0, ..., n}, which induce a change in tax revenue equal to

∑n
k=0 T′k(Yk(w)) ∂Yk

∂τi
R′i(Yi(w)) times the density. Aggregating these effects for all types leads to

(27). Importantly not only compensated and income responses of the ith income are taken into

account but also “cross base" responses ∂Yk(w)
∂ρ and ∂Yk(w)

∂τi
for k 6= i, unless the other incomes are

not taxed at the margin.

Given the other tax schedules, the tax schedule specific to the ith income is optimal if such

income specific tax perturbation triggers no first-order effect on the Lagrangian, whatever the

direction Ri(·) of the tax perturbation). Let:

ε i(yi)
def≡ 1− T′(yi)

yi

∂Yi

∂τi

∣∣∣∣
Yi(w)=yi

(28)

denote the average compensated elasticity of the ith income with respect to its own net of

marginal tax rate among tax payer earning ith income equal to yi, where for any variable X(w)

and any subset Ω ⊂W, X(w)|w∈Ω stands for the mean of X(w) among skill levels w for which

w ∈ Ω. This leads to the following optimal tax formula for the tax schedule specific to the ith

income (see Appendix F.1):

T′i (yi)

1− T′i (yi)
ε i(yi) yih(yi) + ∑

0≤k≤n,k 6=i
T′k(Yk(w))

∂Yk(w)

∂τi

∣∣∣∣
Yi(w)=yi

hi(yi) (29)

=
∫ ∞

z=yi

{
1− g(w)|Yi(w)=z −

n

∑
k=0

T′k(Yk(w))
∂Yk(w)

∂ρ

∣∣∣∣
Yi(w)=z

}
hi(z)dz

Equation (29) extends to the multidimensional case the optimal ABC tax formula of Dia-

mond (1998) and Saez (2001) for the case with a single income. As Saez (2001), Equation (29)

relates optimal marginal tax to empirically estimable sufficient statistics which are behavioral

responses, income density and welfare weights. There are however two important differences.

First, as the underlying heterogeneity is multidimensional, the sufficient statistics have to be

averaged across all types earnings the same level of the ith income.10 Note that this averaging

procedure being along the ith income, it differs from the averaging procedure required for the

optimal jth optimal marginal tax rate. Second, and most importantly, not only the compensated

elasticity ε i(yi) of the ith income with respect to its own marginal tax rate shows up in the left-

hand side of (29). Also the compensated responses of the other bases ∂Yk
∂τi

to a compensated

change in the ith net of marginal tax rate show up.

To understand why, consider, in the spirit of Saez (2001) a reform of the tax schedule spe-

cific to the ith income that consists in a small change denoted ∆τi of the marginal tax rate for
10Saez (2001) conjectured his optimal tax formula can be extended to the case with multidimensional unobserved

heterogeneity. This have been formally proved only recently (Hendren, 2017, Jacquet and Lehmann, 2017).
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taxpayers whose ith income lies in the small interval [yi − δyi , yi]. This reform triggers a change

in tax liability equal to ∆ρ = ∆τiδyi for all taxpayers with an ith income above yi, which in-

duce mechanical and income responses effect equal to the the right-hand side of (29) times

∆ρ. Moreover, for taxpayer earning an ith income between [yi − δyi , yi], the tax reform induces

compensated response equal to ∂Yk
∂τi

for all incomes Yk(w) with k ∈ {0, ..., n}, and not only for

the ith income. The response of kth income induces a change in the of the kth tax liability equal

to −Tyk(Yk(w)) ∂Yk(w)
∂τi

∆τi. As the mass of such taxpayers is h(yi)δyi , summing these effects

for all taxpayers with an ith income in [yi − δyi , yi] and taking into account the definition of

ε i leads to left-hand side of (29) times −∆ρ = −∆τiδyi . At the optimum, all these first-order

effects should compensate each others, which leads to (29). This reasoning in the spirit of Saez

(2001) clarifies that not only the compensated elasticity ε i of the ith income to the change in

the ith marginal net tax rate matters, but also the “cross-base" responses to the other tax base

T′k(Yk(w)) ∂Yk(w)
∂τi

)
∣∣∣
Yi(w)=yi

for all k 6= i.

We now investigate the effects of reforms of the personal income tax schedule. For this

purpose, we consider tax perturbations of the form T̃ (y, x) = T (y)− x R0(∑n
k=1 yk) , where

R0(·) is the direction of the tax reform. Such a perturbation modifies tax liability by:

∂T̃ (Y(w))

∂x

∣∣∣∣
x=0

= −R0(Y0(w))

It modifies the marginal tax rate on the jth marginal tax rate by:

∂T̃yj(Y(w))

∂x

∣∣∣∣∣
x=0

= −ajR′j(Y0(w))

According to (10), the marginal tax rate on the jth income depends not only on the marginal tax

rate of its specific tax schedule T′j (·) but also on the marginal tax rate of the personal income

tax schedule discounted by the indexed parameter aj. Therefore, as shown in Appendix F.2, a

compensated reform of the personal income tax schedule generate responses equal to the sum

of the jth index parameter aj times the compensated elasticity of the ith income to a change in

the jth net of marginal tax rate.

∀i ∈ {0, ..., n} ∂Yi

∂τ0
=

n

∑
j=1

aj
∂Yi(w)

∂τj
(30)

Combining (9) and (30), the compensated elasticity of taxable income is:11

ε0(y0) =
1− T′(y0)

y0
∑

1≤i,j≤n
ai aj

∂Yi(w)

∂τj

∣∣∣∣∣
Y0(w)=y0

(31)

Given these definitions of the effect of a personal income tax perturbation in the direction

R0(·) are given by Equation (27) with i = 0. Consequently, for given income specific tax sched-

ules, the optimal personal income tax schedule verifies (29) with i = 0. We thus get:

11As the matrix
[

∂Yi(w)
∂τj

]
i,j

of compensated responses is positive definite, the compensated elasticity of taxable

income is positive unless a1 = ... = an = 0.
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Proposition 3. For all i ∈ {0, ..., n}:

i) a tax perturbation specific to the ith income affects the government’s Lagrangian by (27).

ii) Given the other tax schedules, the optimal tax schedule specific to the ith income is provided by (29).

We can now describe the effects of change in the tax base parameter ai by considering the

effect of the tax perturbation T̃ (y, x) = T0 (∑n
k=1 ak yk − x yi)+∑n

k=1 Tk(yk). As formally shown

in Appendix F.3, this perturbation induce three effects for taxpayers of type w. First, the tax per-

turbation decreases tax liability by Yi(w) T′0(Y0(w)), which induces a mechanical effect equal

to (g(w)− 1) Yi(w) T′0(Y0(w)). Second, according to (10) a decrease in ai reduces the impact of

the personal income tax schedule on the marginal tax rate of the ith income. By this effect, the

tax perturbation decreases the ith marginal tax by T′0(Y0(w)). Combined with the decrease in

tax liability by T′0(Y0(w)) Yi(w), this mimics an uncompensated change in the ith income which

triggers a response of the kth income equal to ∂Yk
u(w)

∂τi
T′0(Y0(w)) for all k ∈ {0, ..., n}. These be-

havioral responses in turn modifies tax revenue by ∑n
k=0 T′k(Yk(w)) ∂Yk

u(w)
∂τi

T′0(Y0(w)). Finally,

according to (9), the perturbation decreases taxable income by Yi(w). Because of the nonlinear-

ity of the personal income tax schedule, the marginal tax rates on the jth income decreases by

aj Yi(w) T′′0 (Y0(w)) for all j ∈ {1, ...n}. These changes in marginal tax rates in turn induce com-

pensated responses aj
∂Yk(w)

∂τj
Yi(w) T′′0 (Y0(w)) for all incomes Yk(w) with k ∈ {0, ..., n} and for

all j ∈ {1, ...n}, so that the effects on tax revenue is
(

∑n
j=1 ∑n

k=0 aj T′k(Yk(w)) ∂Yk(w)
∂τj

)
Yi(w) T′′0 (Y0(w)).

Adding these effects, weighting them by the density of taxpayers of type w and aggregating

for all types, the effect on the Lagrangian is:

∂L

∂x

∣∣∣∣
x=0

=
∫

w∈W

{[
(g(w)− 1) Yi(w) +

n

∑
k=0

T′k(Yk(w))
∂Yk

u(w)

∂τi

]
T′0(Y0(w)) (32)

+

(
n

∑
j=1

n

∑
k=0

aj T′k(Yk(w))
∂Yk(w)

∂τj

)
Yi(w) T′′0 (Y0(w))

}
f (w) dw

According to Lemma 1, Equation (32) evaluates the social desirability of a reform that con-

sists in modifying the tax index parameter and to rebate in a lump sum way the government’s

net surplus. However, policymakers typically do not consider this way of financing a reform

of the personal income tax base (of parameter ai). The typical way is combining a change in the

tax base paramter ai with a proportional change in tax liability on the ith income, that is with an

uncompensated change in the in the ith marginal tax rate. If the personal income schedule was

linear, i.e. if T0(y0) = t0 ∑n
k=1 akyk, changing the tax parameter ai would be equivalent to an

uncompensated change in the ith marginal tax rate. To see this more clearly, one can compare

the effects of perturbing ai, which is provided by (32) to the effects of a linear tax perturbation

specific to the ith income. Plugging Ri(yi) = ri yi in (27) and using (14) leads to:

∂L

∂x

∣∣∣∣
x=0

=
∫

w∈W

{[
(1− g(w)) Yi(w)−

n

∑
k=0

T′k(Yk(w))
∂Yk

u(w)

∂τi

]
ri

}
f (w) dw
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The two reforms would therefore be equivalent if t0 = ri. Otherwise, the change in ai is

not equivalent to an uncompensated change in the tax rate on the ith income for (at least) two

reasons. First, the uncompensated change in the tax rate specific to the ith income affects the

tax liability of taxpayers proportionally to tax payer’s ith income Yi(w), while the change in ai

affects taxpayers’ liability by the personal marginal tax rate T′0(Y0(w)) times their ith income

Yi(w). Therefore, whenever the personal income tax schedule is progressive thereby exhibit-

ing increasing marginal tax rates, among taxpayer earning the same ith income Yi(w), those

earnings relatively few other incomes are less affected by the change in the tax base parameter

ai than those earnings relatively more other incomes, because the latter face higher personal

income marginal tax rate T′0(Y0(w)). For example, exiting capital income from the personal

income tax base (reducing a2) and taxing capital income according to a specific schedule is,

among individuals earnings the same capital income, relatively more beneficial to taxpayers

whose other incomes also higher, because they face a higher marginal tax rate on their per-

sonal income. Second, a reduction in ai by reducing taxable income decrease the marginal tax

rate on taxable income by Yi(w) T′′(Y0(w)). This reduction triggers compensated responses, an

effect that does not take place with an uncompensated change in the tax rate specific to the ith

income. For example, when exiting capital income from the personal income tax base, marginal

tax rate will decrease which typically increases taxable income but also affects capital income

in an ambiguous way depending on the cross base effects.

We now evaluate a balanced-budget reform that consists in decreasing the index parame-

ter ai of the ith income, and in compensating the revenue losses by a proportional increase in

the tax rate specific to ith income. This is typically an incremental reform that moves the tax

system toward a more separate and a less comprehensive tax system. I thus consider the tax

perturbation T̃ (y, x) = T0 (∑n
k=1 ak yk − x yi) + ∑n

k=1 Tk(yk) + ri(x) yi, where ri(x) is such that
∂B
∂x

∣∣∣
x=0

= 0. According to (27) and (32) tax revenues are perturbed by:12

∂B

∂x

∣∣∣∣
x=0

= r′i(0)
∫

w∈W

{
Yi(w)−

n

∑
k=0

T′k(Yk(w))
∂Yk

u(w)

∂τi

}
f (w)dw

−
∫

w∈W

{[
Yi(w)−

n

∑
k=0

T′k(Yk(w))
∂Yk

u(w)

∂τi

]
T′0(Y0(w))

−
(

n

∑
j=1

n

∑
k=0

aj T′k(Yk(w))
∂Yk(w)

∂τj

)
Yi(w) T′′0 (Y0(w))

}
f (w) dw

If the proportional tax rate on the ith income is on the correct side of the Laffer curve, one

12The effects of tax revenue can be deducted from the effects on Lagrangian by setting welfare weights g(w) in
(27) and in (32).
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has
∫

w∈W

{
Yi(w)−∑n

k=0 T′k(Yk(w)) ∂Yk
u(w)

∂τi

}
f (w)dw > 0 and we must have:

r′i(0) =

∫
w∈W

{
Yi(w)−∑n

k=0 T′k(Yk(w))
∂Yu

k (w)

∂τi

}
T′0(Y0(w)) f (w)dw∫

w∈W

{
Yi(w)−∑n

k=0 T′k(Yk(w))
∂Yu

k w
∂τi

}
f (w)dw

(33)

−

∫
w∈W

(
n
∑

j=1

n
∑

k=0
aj T′k(Yk(w)) ∂Yk(w)

∂τj

)
Yi(w) T′′0 (Y0(w)) f (w)dw

∫
w∈W

{
Yi(w)−∑n

k=0 T′k(Yk(w))
∂Yu

k (w)

∂τi

}
f (w)dw

to get a budget-balanced tax perturbation. The effect on the welfare of taxpayers of type w is

then given by:
1
λ

∂Φ(U(w); w)

∂x

∣∣∣∣
x=0

=
(
T′0(Y0(w))− r′i(0)

)
Yi(w) g(w)

and the effect on the social objective is:

1
λ

∂O

∂x

∣∣∣∣
x=0

=
∫

w∈W

(
T′0(Y0(w)− r′i(0)

)
Yi(w) g(w) f (w)dw (34)

The sufficient statistics summarizing all the efficiency arguments in favor of exiting ith in-

come from the personal income tax base and taxing in a proportional way is r′i(0). If r′i(0) is

negative, the personal income tax base is so inefficient that exiting ith income alone increases

tax revenue. In such a case, the reform is Pareto improving. Otherwise, a unit decrease in ai has

to be compensated by an increase by r′i(0) of the proportional tax rate on the ith income to keep

the budget balanced, which decrease the welfare of taxpayers. Therefore the lower r′i(0), the

more desirable is this switch to a more separate income tax system. According to Equation (33)

this is more likely the case when the effect of a compensated change in the ith marginal tax rate

Yi(w)−∑n
k=0 T′k(Yk(w))

∂Yu
k (w)
∂τi

is lower when the marginal tax rate on personal income is higher,

and when the stimulating effect of reducing the taxable income
n
∑

j=1

n
∑

k=0
aj T′k(Yk(w)) ∂Yk(w)

∂τj
is

stronger.

However, not all taxpayers may benefit from this reform. Among taxpayers earning ith in-

come Yi(w), those earnings relative more other income typically face a higher marginal tax rate

T′0(Y0(w)) on their taxable income, thereby benefit relatively more from the exiting of ith in-

come from the personal income tax base than the others. Conversely, the proportional increase

in the tax rate specific to the ith income affects identically the welfare of all taxpayers earnings

the same ith income. If the all the incomes are perfectly correlated, as it was the case in Section

IV, then the effects are the same across all agents earning the same ith income (because they then

earn the same taxable income Y0(w). Conversely, if agents earning the same ith income earn

very different taxable income, thereby facing very different marginal tax rate on their personal

income, some may win (because T′0(Y0(w)) > r′i(0)) from the reform while some other may

loose (because T′0(Y0(w)) > r′i(0)). Therefore, whether or not the reform is socially desirable

depends on the distribution of welfare weights between winners and losers.
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Proposition 4. Reducing ai and compensating the revenue losses by a proportional tax on the ith income

is socially desirable if and only if the expression in (34) is positive.
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A Convexity of the indifference curves

Let C (·, y; w) denote the reciprocal of U (·, y; w). Tax payers of type w earning incomes y
should get consumption c = C (u, y; w) to enjoy utility u = U (c, y; w). We get:

Cu(u, y; w) =
1

Uc (C (u, y; w), y; w)
Cyi(u, y; w) = S i (C (u, y; w), y; w) (35)

For each type w ∈ W and each utility level u, I assume the indifference curve: y 7→
C (u, y; w) to be strictly convex. The ith partial derivative of y 7→ C (u, y; w) is S i(C (u, y; w), y; w),

so the Hessian is the matrix
[
S i

yj
+ S i

cS j
]

i,j
= −

Uyiyj + S jUc,yi + S iUcyj + S iS jUcc

Uc
.

The first-order condition of (2) is given by:

0 = (1− Tyi(y)) Uc

(
n

∑
k=1

yk − T (y) , y; w

)
+Uyi

(
n

∑
k=1

yk − T (y) , y; w

)

So, using (3), the matrix of the second-order condition is:[
Uyiyj + S jUcyi + S iUcyj + S iS jUcc −UcTyiyj

]
i,j
= −Uc

[
S i

yj
+ S i

cS j + Tyiyj

]
i,j

The second-order condition holds strictly for taxpayer of type w if and only if matrix[
S i

yj
+ S i

cS j + Tyiyj

]
i,j

is positive definite, that is if and only if, the indifference curve y 7→
C (U(w), y; w) is more convex than the budget set y 7→ ∑n

k=1 yk − T (y) at y = Y(w) and
c = C(w).

B Behavioral elasticities

We first rewrite (2) in terms of lump-sum and compensated reforms at tax base Y(w):

max
y=(y1,...,yn)

U

(
n

∑
k=1

yk − T (y) +
n

∑
k=1

τk(yk −Yk(w)) + ρ, y; w

)

Using (1), the first-order conditions (3) are:

∀i ∈ {1, ..., n} : S i

(
n

∑
k=1

yk − T (y) +
n

∑
j=1

τj(yj −Yj(w)) + ρ, Y(w); w

)
= 1−Tyi(Y(w))+ τi

Under Assumption 1, one can apply the implicit function theorem to the first-order conditions
at y = Y(w) τ1 = ... = τn = ρ = 0, which leads to:[

S i
yj
+ S i

cS j + Tyiyj

]
i,j
· dyT = (dτ1, ..., dτn)

T − (S1
c , ...,Sn

c )
Tdρ (36)
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Inverting this system, we get the matrix of compensated responses in Equation (12), and the
vector of income response given in Equation (13).

Rewriting Program (2) and the first-order conditions (3) after a general tax perturbation
y 7→ T̃ (y, x) leads to:

max
y=(y1,...,yn)

U

(
n

∑
k=1

yk − T̃ (y, x), y; w

)
(37)

and:

∀i ∈ {1, ..., n} : S i

(
n

∑
k=1

yk − T̃ (y, x), Y(w); w

)
= 1− T̃yi(Y(w), x)

Using the implicit function theorem to differentiate these first-order conditions at y = Y(w)
and x = 0 leads to:

[
S i

yj
+ S i

cS j + Tyiyj

]
i,j
· dyT =

−
(

∂T̃y1

∂x
, ...,

∂T̃yn

∂x

)T

+ (S1
c , ...,Sn

c )
T ∂T̃

∂x

dx (38)

Plugging (12) and (13) into (38) leads to (15). Finally, applying the envelope theorem to (37)
leads to:

∂U(w)

∂x

∣∣∣∣
x=0

= −Uc

(
n

∑
k=1

Yk(w)− T (Y(w)) , Y(w); w

)
∂T̃ (Y(w), 0)

∂x
(39)

which leads to (19). In the case where the tax perturbation is linear, i.e. T̃ (y, x) = T (y)− x yj
as in (11c), Equation (15) simplifies to:

∂Yi(w)

∂x

∣∣∣∣
x=0

=
∂Yi(w)

∂τj
+ Yj(w)

∂Yi(w)

∂ρ

which leads to (14).
The differentiation of first-order conditions (3) with respect to type w leads to:[

S i
yj
+ S i

cS j + Tyiyj

]
i,j
· dyT = −

[
S i

wj

]
i,j
· dwT

which, combined with (12), leads to Equation (22).

C Proof of Lemma 1

Let y 7→ T̃ (y, x) be a tax perturbation and let `(x) be the lump-sum rebate such that the tax
perturbation y 7→ T̃ (y, x) + `(x) is budget-balanced. We denote ∂X

∂x

∣∣∣
x=0

, the partial derivative

of an economic variable X along the tax perturbation y 7→ T̃ (y, x) while ∂X
∂x

∣∣∣?
x=0

denotes the

partial derivative of X along the budget-balanced tax perturbation y 7→ T̃ (y, x) + `(x). We
have from the envelope theorem and (19):

1
λ

∂O

∂x

∣∣∣∣?
x=0

=
1
λ

∂O

∂x

∣∣∣∣
x=0
− `′(0)

∫
w∈W

g(w) f (w)dw

=
1
λ

∂O

∂x

∣∣∣∣
x=0
− `′(0)

∫
w∈W

[
1−

n

∑
i=1
Tyi(Y(w))

∂Yi(w)

∂ρ

]
f (w)dw (40)
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where the second equality is derived from Equation (20) determining the shadow value of
public funds. From (15), we get

∂Yi(w)

∂x

∣∣∣∣?
x=0

=
∂Yi(w)

∂x

∣∣∣∣
x=0
− `′(0)

∂Yi(w)

∂ρ

which implies that:

0 =
∂B

∂x

∣∣∣∣?
x=0

=
∂B

∂x

∣∣∣∣
x=0

+ `′(0)
∫

w∈W

[
1−

n

∑
i=1
Tyi(Y(w))

∂Yi(w)

∂ρ

]
f (w)dw (41)

where the first equality is due to `(x) being adjusted so that the tax perturbation y 7→ T̃ (y, x) +

`(x) is budget-balanced, i.e. 0 = ∂B
∂x

∣∣∣?
x=0

. Combining Equations (40) and (41) leads to:

1
λ

∂O

∂x

∣∣∣∣?
x=0

=
∂B

∂x

∣∣∣∣
x=0

+
1
λ

∂O

∂x

∣∣∣∣
x=0

=
∂L

∂x

∣∣∣∣
x=0

D Proof of Proposition 1

Following Laroque (2005) and Gauthier and Laroque (2009), the proof consists in stating
that for any tax schedule y 7→ T (y) there exists a mapping T (·) defined on the positive real
line such that each type of individuals gets the same utility under y 7→ T (y) and under y 7→
T (∑n

i=1 yi), but the government’s revenues are larger under y 7→ T (∑n
i=1 yi) than under y 7→

T (·).
Let Y(w) be the solution to:

max
y

U
(

n

∑
i=1

yi − T (y),V(y); w

)
(42)

Let C(w)
def≡ ∑n

i=1 Yi(w)−T (Y(w)), let V(w)
def≡ V(Y(w)) and let U(w)

def≡ U (C(w), Y(w); w) =
U (C(w), V(w); w).

I first note that if there exist two types w? 6= w′ such that V(w?) = V(w′), then one need
to have C(w?) = C(w′). If by contradiction C(w?) > C(w′) (the argument for C(w?) <
C(w′) is symmetric), then type w′ would obtain a higher utility by choosing Y(w?) than Y(w′)
as in such a case: U (C(w?), Y(w?); w′) = U (C(w?), V(w?); w′) > U (C(w′), V(w?); w′) =
U (C(w′), V(w′); w′) = U (C(w′), Y(w′); w′) which would contradict that y = Y(w′) solves
(42) for individuals of type w′.

Next, I define function R(·) such that, for each real v, either there exists w such that v =
V(w), in which case we defineR(v) = C(w), orR(v) = −∞. For individuals of type w solving
(42) amounts to solve

max
v

U (R(v), v; w) (43)

As V(·) is convex, the program

V(g)
def≡ min

y
V(y) s.t :

n

∑
i=1

yi = g (44)

is well defined and so is its value V(·). I then define T (·) by:

T : g 7→ T (g)
def≡ g−R (V(g))
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Under the tax schedule y 7→ T (∑n
i=1 yi), one has

n

∑
i=1

yi −T

(
n

∑
i=1

yi

)
= R

(
V

(
n

∑
i=1

yi

))
Hence, under the tax schedule y 7→ T (∑n

i=1 yi), taxpayers of type w solve:

max
y

U
(
R
(

V

(
n

∑
i=1

yi

))
,V(y); w

)
This problem can be solved into steps. First, solving the dual of (44)

max
y

n

∑
i=1

yi s.t : V(y) = v

for given level of subutility v. Second, solving Program (43). The tax schedule y 7→ T (∑n
i=1 yi)

therefore leads each type of individual to reach the same V(w) and the same utility U(w) than
the tax schedule y 7→ T (y). However, tax revenues increases if, with the initial tax schedule
T (·), Y(w) is not solving

max
y

n

∑
i=1

yi s.t. : V(y) = V(w) ⇔ min
y

V(y) s.t. :
n

∑
i=1

yi =
n

∑
i=1

Yi(w)

E Proof of Proposition 2

We need to show that under the assumptions of Proposition 2, the optimal allocation w 7→
(C(w), Y1(w, ..., Yn(w)) can be decentralized by a separate income tax. Under the assumptions
of Proposition 2, for each i ∈ {1, ..., n}, Function Yi : w 7→ Yi(w) is invertible with a reciprocal
denoted Y−1

i and defined on [Yi(w), Yi(w)].
We first characterize how the separate income tax schedule y 7→ T (y) = ∑n

i=1 Ti(yi) should
be to decentralize the allocation w 7→ (C(w), Y1(w, ..., Yn(w)) and second verify this tax sched-
ule actually decentralize the optimal optimal allocation w 7→ (C(w), Y1(w, ..., Yn(w)).

Using the first-order condition (3) on each tax base, we can recover for each type w and each
tax base i ∈ {1, ..., n}, the ith marginal tax rate from the ith marginal rate of substitution. We
thus need to have:

T′i (yi) = 1− υi
yi

(
yi; Y−1

i (yi)
)

Let w? be a skill level and let y?i = Yi(w?). If the allocation w 7→ (C(w), Y1(w, ..., Yn(w)) can be
decentralized by a separate income tax, this tax schedule has to verify:

T (y) =

(
n

∑
i=1

Yi(w?)

)
− C(w?) +

n

∑
i=1

Ti(yi) (45)

where : Ti(yi) =


yi∫

y?i

[
1− υi

yi

(
t; Y−1

i (t)
)]

dt if: yi ∈ [Yi(w), Yi(w)]

+∞ if: yi /∈ [Yi(w), Yi(w)]

So up to a constant, each income specific tax schedule is uniquely defined.
We now show that the separate tax schedule (45) induces the allocation w 7→ (C(w), Y1(w, ..., Yn(w)).

First, as (45) is separate and preferences are additively separable, the n dimensional program
(2) of individual of type w can be simplified into n one-dimensional programs:

n

∑
i=1

{
max

yi
yi − Ti(yi)− υi(yi; w)

}
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From (45), marginal tax rates are given by: 1− Tyi(y) = υi
yi

(
yi; Y−1

i (yi)
)

. The ith first-order
condition is obviously verified when yi = Yi(w).

Finally we have to verify that for each skill level w and each tax base, Yi(w) maximizes
yi 7→ yi − Ti(yi)− υi(yi; w). When yi ∈ [Yi(w), Yi(w)], we get that:

yi − Ti(yi) = y?i +

yi∫
y?i

υi
yi

(
t; Y−1

i (t)
)

dt

So, we have:

yi − Ti(yi)− υi(yi; w) = y?i − υi(y?i ; w) +

yi∫
y?i

[
υi

yi

(
t; Y−1

i (t)
)
− υi

yi
(t; w)

]
dt

[
Yi(w)− Ti(Yi(w))− υi(Yi(w); w)

]
−
[
yi − Ti(yi)− υi(yi; w)

]
=

Yi(w)∫
yi

[
υi

yi

(
t; Y−1

i (t)
)
− υi

yi
(t; w)

]
dt

The latter expression is positive because υi
yi ,w < 0 and Y−1

i (·) is increasing.

F Multidimensional case

We first rewrite Equations (16)-(21) when the tax schedule is given by (8). According to (9),
we get:

∂Y0(w)

∂x

∣∣∣∣
x=0

=
n

∑
k=1

ak
∂Yk(w)

∂x

∣∣∣∣
x=0

= −
n

∑
j=1

(
n

∑
k=1

ak
∂Yk(w)

∂τj

)
∂T̃yj(Y(w))

∂x

∣∣∣∣∣
x=0

−
n

∑
k=1

(
ak

∂Yk(w)

∂ρ

)
∂T̃ (Y(w))

∂x

∣∣∣∣
x=0

Equation (15) is therefore also verified for taxable income with i = 0 as long as the income
response and compensated responses of taxable income are respectively defined by (24) and
(25).

Given the form of the tax schedule in (8), Equation (16) becomes:

dT̃ (Y(w), x)
dx

∣∣∣∣
x=0

=
∂T̃ (Y(w), x)

∂x

∣∣∣∣
x=0

+
n

∑
k=0

T′k(Yk(w))
∂Yk(w)

∂x

∣∣∣∣
x=0

Combining the latter Equation with (15), we get:

dT̃ (Y(w), x)
dx

∣∣∣∣
x=0

=

[
1−

n

∑
k=0

T′k(Yk(w))
∂Yk(w)

∂ρ

]
∂T̃ (Y(w), x)

∂x

∣∣∣∣
x=0

−
n

∑
j=1

[
n

∑
k=0

T′k(Yk(w))
∂Yk(w)

∂τj

]
∂T̃yj(Y(w), x)

∂x

∣∣∣∣∣
x=0

Using (19), Equation (21), which provides the effect of a tax perturbation on the Lagrangian,
becomes:

∂L

∂x

∣∣∣∣
x=0

=
∫

w∈W

{[
1− g(w)−

n

∑
k=0

T′k(Yk(w))
∂Yk(w)

∂ρ

]
∂T̃ (Y(w), 0)

∂x

∣∣∣∣
x=0

(46)

−
n

∑
j=1

(
n

∑
k=0

T′k(Yk(w))
∂Yk(w)

∂τj

)
∂T̃yj(Y(w), 0)

∂x

∣∣∣∣∣
x=0

}
f (w)dw
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F.1 Reforms of the tax schedule specific to the ith income

I consider tax perturbations of the form:

T̃ (y, x) = T0

(
n

∑
k=1

ak yk

)
+

n

∑
k=1

Tk(yk)− x Ri(yi)

which implies:

∂T̃ (Y(w), x)
∂x

∣∣∣∣
x=0

= −Ri(Yi(w)) and
∂T̃yi(Y(w), x)

∂x

∣∣∣∣∣
x=0

= −R′i(Yi(w))

Equation (46) then leads to (27), thereby to part i) of Proposition 3. Using the law of iterated
expectations to condition type w on Yi(w) = yi and using (28) leads to:

∂L

∂x

∣∣∣∣
x=0

=
∫

yi∈R+

{[
T′i (yi)

1− T′i (yi)
ε i(yi) yi + ∑

0≤k≤n,k 6=i
T′k(Yk(w))

∂Yk(w)

∂τi

∣∣∣∣
Yi(w)=yi

]
R′(yi)

−
[

1− g(w)|Yi(w)=yi
−

n

∑
k=0

T′k(Yk(w))
∂Yk(w)

∂ρ

∣∣∣∣
Yi(w)=yi

]
R(yi)

}
h(yi) dyi

Integrating the latter equation by parts and using (20) leads to:

∂L

∂x

∣∣∣∣
x=0

=
∫

yi∈R+

{
T′i (yi)

1− T′i (yi)
ε i(yi) yi + ∑

0≤k≤n,k 6=i
T′k(Yk(w))

∂Yk(w)

∂τi

∣∣∣∣
Yi(w)=yi

−
∫ ∞

z=yi

[
1− g(w)|Yi(w)=yi

−
n

∑
k=0

T′k(Yk(w))
∂Yk(w)

∂ρ

∣∣∣∣
Yi(w)=yi

]
h(z)dz

}
R′(yi)dyi

If Ti(·) is optimal given the other tax schedules, any perturbation of taxation of the ith income
should yield no first-order effect, whatever the direction Ri(·), thereby, whatever R′i(·). There-
fore, the integrand in preceding expression should be zero for all yi, which leads to (29), thereby
to part i) of Proposition 3.

F.2 Reforms of the personal income tax schedule

I consider tax perturbations of the form:

T̃ (y, x) = T0

(
n

∑
k=1

ak yk

)
+

n

∑
k=1

Tk(yk)− x R0

(
n

∑
k=1

ak yk

)

which implies:

∂T̃ (Y(w), x)
∂x

∣∣∣∣
x=0

= −R0(Y0(w)) and
∂T̃yj(Y(w), x)

∂x

∣∣∣∣∣
x=0

= −aj R′0(Y0(w))

Using (15) leads to:

∂Yk(w)

∂x

∣∣∣∣
x=0

=
n

∑
j=1

aj
∂Yk(w)

∂τj
R′0(Y0(w)) +

∂Yk(w)

∂ρ
R0(Y0(w)) ∀k ∈ {1, ..., n}
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which implies Equation (30) for k ∈ {1, .., n}. Combining the latter equation with (9), (24) and
(25) leads to:

∂Y0(w)

∂x

∣∣∣∣
x=0

= ∑
1≤k,j≤n

akaj
∂Yk(w)

∂τj
R′0(Y0(w)) +

n

∑
k=1

ak
∂Yk(w)

∂ρ
R0(Y0(w))

=
n

∑
j=1

aj
∂Y0(w)

∂τj
R′0(Y0(w)) +

∂Y0

∂ρ
R0(Y0(w))

which implies (30) also holds for k = 0, i.e. with with taxable income. According to Equation
(46), one gets:

∂L

∂x

∣∣∣∣
x=0

=
∫

w∈W

{[
n

∑
k=0

T′k(Yk(w))

(
n

∑
j=1

aj
∂Yk(w)

∂τj

)]
R′0(Y0(w))

+

[
−1 + g(w) +

n

∑
k=0

T′k(Yk(w))
∂Yk(w)

∂ρ

]
R0(Y0(w))

}
f (w) dw

=
∫

w∈W

{[
n

∑
k=0

T′k(Yk(w))
∂Yk(w)

∂τ0

]
R′0(Y0(w))

+

[
−1 + g(w) +

n

∑
k=0

T′k(Yk(w))
∂Yk(w)

∂ρ

]
R0(Y0(w))

}
f (w) dw

where the second equality uses (30) and corresponds to (27) with i = 0. Part i) of Proposition 3
is therefore also valid for i = 0, thereby Part ii).

F.3 Reforms of the personal income tax base

I consider tax perturbations of the form:

T̃ (y, x) = T0

(
n

∑
k=1

ak yk − x yi

)
+

n

∑
k=1

Tk(yk)

which implies:

∂T̃ (Y(w), x)
∂x

∣∣∣∣
x=0

= −Yi(w) T′0(Y0(w))

∂T̃yi(Y(w), x)
∂x

∣∣∣∣∣
x=0

= −T′0(Y0(w))− ai Yi(w) T′′0 (Y0(w))

∀j ∈ {1, ..., n} , j 6= i
∂T̃yj(Y(w), x)

∂x

∣∣∣∣∣
x=0

= −aj Yi(w) T′′0 (Y0(w))

Using (46) leads to:

∂L

∂x

∣∣∣∣
x=0

=
∫

w∈W

{[
n

∑
k=0

T′k(Yk(w))
∂Yk(w)

∂τi

]
T′0(Y0(w))

+

(
n

∑
j=1

n

∑
k=0

aj T′k(Yk(w))
∂Yk(w)

∂τj

)
Yi(w) T′′0 (Y0(w))

+

[
g(w)− 1 +

n

∑
k=0

T′k(Yk(w))
∂Yk(w)

∂ρ

]
Yi(w) T′0(Y0(w))

}
f (w) dw

Using (14), the preceding equation simplifies to (32).
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