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Abstract

In this article, we develop an endogenous growth model to analyze the relation
between tax evasion and public debt accumulation. Our results are threefold. First,
our model exhibits a multiplicity of equilibria in the long run: there is a low-growth
and high public debt balanced growth path (BGP) and a high-growth and low-public
debt BGP. Second, we show the existence of threshold effects in the tax evasion-public
debt nexus. In low-growth economies, tax evasion negatively affects public debt
while the relation between the two variables is characterized by a U-shaped curve in
high-growth economies. Finally, regarding the local stability of the BGPs, we show
that the high BGP is always well-determined. However, the topological behavior of
the low BGP is more complex: it can either be locally determined, undetermined or
overdetermined. In the latter case, a Hopf bifurcation appears depending on the level
of tax evasion.
Keywords: Tax evasion, public debt accumulation, endogenous growth, multiple
equilibria, Hopf bifurcation

1. Introduction

Tax evasion is one of the major public issues that most countries around the
world are facing today. In 2013, the European Commission President Jose-Manuel
Barroso said in a speech at the European Parliament that around 1 trillion euros is
evaded annually in the EU member states. The United States are up against a similar
problem. According to Rogoff (2017), tax evasion is estimated to be more than 3% of
the US GDP every year. In Africa, a report of Global Financial Integrity (2013) has
highlighted that tax evasion causes losses estimated at hundreds of millions of dollars
per year. Thus, a number of governments, international organizations and NGOs
have denounced in recent years the scale of tax evasion which is increasing steadily
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around the world. The recent revelations of the Panama Papers are an illustration
of the worrisome increase of tax evasion between 1975 and 2016. In the same time,
the stock of public debt held worldwide has increased from $26.85 trillion in 2005 to
$56.89 trillion in 2016.1 These observations raise a crucial question: what are the
macroeconomic consequences of tax evasion in terms of public finance and public
debt accumulation?

Surprisingly, to the best of our knowledge, there is no work that addresses the rela-
tion between tax evasion and public debt accumulation. Most of the macroeconomic
literature on tax evasion has essentially focused on taxation policies.2 Yet, Litina
and Palivos (2013) have highlighted that tax evasion is a key part of the “Greek
tragedy”. Similarly, Pappa et al. (2015) show, in a DSGE model calibrated using
Italian data, that tax evasion leads to substantial losses in output and welfare and
amplifies the need to increase the tax rate in order to reduce the stock of public
debt. They conclude that their results hold for countries like Greece, Spain and
Portugal as well. Thus, tax evasion seems to strongly contribute to increase fiscal
deficits in many European countries. Nevertheless, the relation may be more complex
because tax evasion improves the efficiency of the private sector and may generate a
complex interaction with economic growth. Strategic complementarities and multiple
equilibria may emerge (Mauro, 2004; Aidt et al., 2008) and their implications in
terms of public debt have not yet been explored in an endogenous growth setup.

The purpose of this paper is to fill this gap in the literature by developing a
theoretical framework that allows assessing the relation between tax evasion and
public debt accumulation. To this end, we build an endogenous growth model with
productive public expenditures where public debt is introduced by relaxing the BBR
assumption, in line with the experience of most countries that face positive deficit
rates. Contrary to Minea and Villieu (2012) and Menuet et al. (2017) who have
modeled similar mechanisms, we assume that households receive a risk premium
that positively depends on tax evasion. In a first step, tax evasion is modeled by an
exogenous fraction of the government’s revenues that households evade in order to

1Source: https://www.statista.com/statistics/686067/global-public-debt/
2For example, Chen (2003) examines how tax evasion affects the optimal tax rate in an AK

endogenous growth model with productive public expenditures and a balanced-budget rule (hereafter
BBR). Similarly to Barro (1990) and Futagami et al. (1993), his model reproduces the inverted
U-shaped curve between optimal taxation and growth. However, he shows that the optimal tax rate
is higher as tax evasion becomes more widespread. According to Chen (2003), an increased tax rate
allows compensating for the losses caused by tax evasion. However, this result holds only when the
government has no other instruments to finance public spending. If we relax the BBR’s assumption,
the losses caused by tax evasion might also be financed by public borrowing.
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increase their disposable income. As a second step, we endogenize tax evasion and
consider the optimizing behavior of households who make an effort to evade as much
taxes as possible.

Our results are threefold. First, in the steady-state, our model exhibits multiplicity
of equilibria. Contrary to Mauro (2004), this multiplicity comes from the interaction
between the intertemporal households’ saving behavior and the government budget
constraint. On the one hand, in the Keynes-Ramsey rule, economic growth is positively
related to productive public expenditures that increase the real interest rate, and
then, the public debt burden in the long run. On the other hand, productive public
expenditures are positively linked to economic growth since growth allows reducing
the public debt burden in the long run. This interaction generates a multiplicity of
equilibria that leads to two steady-state solutions, i.e a high-growth and low-public
debt solution and a low-growth and high-public debt solution.

Second, regarding the long run consequences of tax evasion on growth and public
debt, we show that the low BGP positively depends on tax evasion while the effects of
tax evasion on the high BGP are characterized by an inverted U-shaped relation. By
contrast, the relation between tax evasion and public debt accumulation is negative
in low-growth economies and characterized by a U-shaped curve in high growth
economies. In high-growth economies, tax evasion exerts a dual effect on public
debt. On the one hand, it increases the marginal productivity of private capital by
improving the efficiency of the private sector leading to (i) a higher growth and (ii) a
lower debt. On the other hand, tax evasion, by reducing tax revenues, (i) decreases
growth and (ii) amplifies the need to resort to public borrowing to finance public
spending.

Third, regarding the transition path, our model exhibits complex dynamics. While
the high BGP is always saddle-path stable, the determinacy of the low BGP crucially
depends on the elasticity of the risk premium (which is itself a function of tax evasion).
The low BGP can either be locally determined (saddle-path stable), overdetermined
(unstable) or undetermined (stable). In the latter case, a Hopf bifurcation occurs,
leading to the emergence of limit-cycles and aggregate instability. We also show that
the behavior of the government towards tax evasion is an essential variable for the
determinacy of the low BGP.

The remainder of the paper is structured as follows. Section 2 presents the baseline
model. In Section 3, we focus on the steady-state properties. Section 4 analyzes the
dynamics of the model outside the steady-state. Section 5 proposes an extension of
the model to the case where tax evasion is endogenous. Section 6 concludes.
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2. The model

We consider a continuous-time endogenous growth model in a closed economy.
The economy is populated by two perfectly rational agents: a private sector and a
government.

2.1. The private sector

The private sector is represented by an infinitely-lived representative agent who
produces and consumes a unique final good. His objective is to maximize the present
value of the discounted sum of instantaneous utility functions based on consumption
(ct > 0).

U(ct) =
∞∫
0

exp(−ρt)u(ct) dt, (1)

where ρ ∈ (0,∞) corresponds to the subjective discount rate.
To get an endogenous growth path in the long run, we assume a CES utility

function where σ corresponds to the intertemporal elasticity of substitution

u(ct) =


c1−σ
t − 1
1− σ if σ 6= 1,

log(ct) if σ = 1.
(2)

Moreover, for U(ct) to be bounded3, we need to ensure that the no-Ponzi game
constraint is satisfied, i.e. (1− σ)γc < ρ.4

The production function (yt), based on physical capital (kt) and productive public
expenditures (gt), is the same as in Barro (1990). It is described by the following
relation :

yt = Ak1−α
t gαt , (3)

where A is a scale parameter and 0 < α < 1 is the elasticity of output to productive
public expenditures (similarly, 0 < 1 − α < 1 is the elasticity of output to private

3This condition is necessary to find an optimum for welfare maximization.
4We note γx the growth rate of the variable x.
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capital). All variables are per capita. For the sake of simplicity and without any loss
of generality, population is normalized to unity.

In this model, households accumulate two assets: public debt securities bt and
private capital kt. For simplicity, we abstract from capital depreciation. Therefore,
the household’s instantaneous budget constraint can be expressed as:5

k̇t + ḃt = [1− P(.)]Rtbt + ydt − ct. (4)

Households use their income (yt) to consume ct, to accumulate capital kt and save
a part of their revenue in the form of government bonds (bt). Government bonds are
public debt securities and have a return rate noted Rt. Notice that the return rate of
bonds (Rt) is different from the real interest rate (rt). The latter is subject to a risk
premium noted P(.), to be defined below. Finally, ydt corresponds to the disposable
income of households expressed as

ydt = [1− (1− η)τ ]yt, (5)

where τ represents the flat-tax rate fixed by the government and η is a parameter
denoting tax evasion. Indeed, we consider in this model that households may have
incentives to evade taxes in order to increase their disposable income. As Huang
and Wei (2006), Dimakou (2013) and Dimakou (2015) among others, we model tax
evasion, in a first stage, by a simple exogenous parameter reducing tax revenues for
the government. However, we also consider that this reduction of the tax revenues
collected by the government leads to a proportional increase in the disposable income
of households at the aggregate level. Thus, for η → 1, tax evasion is widespread in
the economy. Conversely, tax evasion is very low when η → 0.

2.2. The government

The government determines the tax rate and borrows from the household in
order to provide productive public expenditures. However, the government faces
tax evasion. Following Huang and Wei (2006), Dimakou (2013), Dimakou (2015),
we model tax evasion affects by a parameter η reducing tax revenues. Hence, the
government budget constraint is expressed as

5A dot over a variable corresponds to the first derivative of this variable with respect to time:
ẋt := ∂xt/∂t.
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ḃt = Rtbt + gt − (1− η)τyt. (6)

The expression (6) constitutes an extension of the Barro’s (1990) budget constraint
for two reasons. First, it allows productive public expenditures to be financed by
public borrowing. Second, the government faces a tax leakage because of by tax
evasion.

In addition, we assume the risk premium to be a positive function of the level of
tax evasion. The higher the level of tax evasion, the higher the risk premium. Thus,
we define the expression of the risk premium as follows

P(.) = 1−
{

[1− η]τ ȳt
b̄t

}ε
, (7)

where ε denotes the sensitivity of the risk premium and b̄t and ȳt are respectively
the equilibrium values of public debt and output. Notice that the representative
household takes b̄t and ȳt as given values in his maximization program.

Finally, in order to obtain an endogenous growth solution, productive public
expenditures must be endogenous in the government budget constraint and must
therefore converge on some constant in the long run. To characterize this fact, we
assume that the government follows the following fiscal rule

ḃt = θyt, (8)

where θ is a constant target of deficit.

2.3. Equilibrium

The equilibrium of the model is obtained by solving the household’s program.
This amounts to maximizing (1) subject to the constraints (2), (3), (4) and (5). The
resolution of the household’s maximization program is provided in Appendix A. It
leads to the usual Keynes-Ramsey rule governing the law of motion of consumption

γc := ċt
ct

= rt − ρ
σ

. (9)
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The goods market equilibrium provides the growth rate of capital

γk := k̇t
kt

= yk − gk − ck. (10)

where gk := gt/kt and ck := ct/kt. The GDP-to-capital ratio is expressed as

yk := yt
kt

= Agαk , (11)

The law of motion of public debt stems from the fiscal rule followed by the
government (8)

γb := ḃt
bt

= θyk
bk
, (12)

and bk is obtained by using the government budget constraint.

θyk = Rtbk + gk − (1− η)τyk. (13)

In addition, the tradeoff between public debt accumulation and private capital
accumulation is given by the following relation

Rt = rt
1− P(.) , (14)

where Rt > rt ∀t and the real interest rate rt is equal to the marginal productivity
of capital such that rt = [1− (1− η)τ ](1− α)yk. Notice that the return of bonds is
positively related to the risk premium. The higher the risk premium, the higher the
return of bonds.

Finally, replacing Rt by its expression in (14), we obtain the expression of the
equilibrium public debt-to-capital ratio which only depends on the productive public
expenditures-to-capital ratio

bk = yk

{
[(θ + (1− η)τ)yk − gk] [(1− η)τ ]ε

(1− α)[1− (1− η)τ ]y2
k

} 1
1+ε

. (15)
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3. The steady-state

3.1. The multiplicity of BGPs

We define a balanced growth path (hereafter BGP) where output, consumption,
public debt, capital and productive public spending grow at a unique rate, namely
γ∗6 (γ∗ = ẏt/yt = ċt/ct = ḃt/bt = k̇t/kt = ġt/gt). Since we are interested in studying
the relation between tax evasion, public debt and economic growth, we express the
steady-state solution by two relations of bk as functions of γ∗.

We get a first relation between b∗k and γ∗ from equation (12)

b∗k = θAg∗k
α

γ∗
=: F(γ∗), (16)

where the steady-state ratio of productive public expenditures-to-capital is a function
of γ∗. We obtain its expression by combining the Keynes-Ramsey rule (γ∗ = σ−1(r∗−
ρ)) and the expression of the steady-state real interest rate (r∗ = (1− α)(1− (1−
η)τ)Ag∗kα)

g∗k =
[

σγ∗ + ρ

A[1− (1− η)τ ](1− α)

] 1
α

. (17)

From (15), we obtain a second relation between γ∗ and b∗k

b∗k = y∗k

{
[(θ + (1− η)τ)y∗k − g∗k] [(1− η)τ ]ε

(1− α)[1− (1− η)τ ]y∗k2

} 1
1+ε

=: G(γ∗), (18)

where y∗k = Ag∗k
α.

Hence, the steady-state economic growth rate and the ratio of public debt-to
capital are obtained at the intersection of equations (16) and (18).

Proposition 4.1. (Multiplicity of BGPs) For small values of θ ≥ 0 and η ≥ 0, there
exists a non-empty set of parameters, denoted C , which contains two and only two
(positive) steady-state balanced-growth paths: a low BGP (noted γL) and a high BGP
(noted γH), such that 0 < γL < γH .

6A star exponent (x∗) denotes the steady-state value.
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Proof. We proceed in two steps. First, we show that there are two and only two
BGPs for the special case θ = 0. For ḃt = bt = 0 and γ > 0, the ratio of public
spending-to-capital is defined by

g∗k = [A(1− η)τ ]
1

1−α =: gBk , (19)

and since the steady-state real interest rate is such that rB = (1 − α)[1 − (1 −
η)τ ]A

(
gBk
)α

, the associated economic growth rate is such that

γB = σ−1
[
(1− α)[1− (1− η)τ ]A

(
gBk
)α
− ρ

]
. (20)

The couple
(
γB, 0

)
denotes the “Barro solution” where γB > 0.

Moreover, we can obtain a no-growth solution, called the “Solow solution”, for
θ = γ = 0. In this case, equation (16) is no longer defined but we can easily extract
from (17) the corresponding expression of the productive public expenditures-to-
capital ratio :

gSk =
[

ρ

A(1− α)(1− (1− η)τ)

] 1
α

. (21)

Therefore, bSk is a function of the parameters of the model

bSk = ySk


[
(1− η)τySk − gSk

]
[(1− η)τ ]ε

(1− α)[1− (1− η)τ ] (ySk )2


1

1+ε

. (22)

Thus, the couple
(
0, bSk

)
characterizes the second BGP of the model for θ = 0.

The second step consists of generalizing the proof to the case where θ > 0. In
this case, it is clear that F(γ∗) ∈ C∞(R+) is a strictly decreasing and strictly convex
function since F ′(γ∗) = − θρ

(1−α)[1−(1−η)τ ]γ2 < 0 and F ′′(γ∗) = 2θρ
(1−α)[1−(1−η)τ ]γ3 > 0.

In addition, lim
γ∗→0
F(γ∗) = −∞ and lim

γ∗→+∞
F(γ∗) = 0. On the other hand, we can

observe that G(γ∗) ∈ C∞(]0, γ̄∗[) is characterized by an inverted U-shaped curve on
the interval ]0, γ̄∗[. Indeed, from G ′(γ∗) = 0, we can extract a threshold of growth
(noted γ̂∗) which is equal to γ̂∗ = 1

σ

[
(1− α)[1− (1− η)τ ]A

(
εα[θ+(1−η)τ ]A

1−α(1−ε)

) α
1−α − ρ

]
.

Besides, it is quite obvious that G ′′(γ∗) < 0. Therefore, the function G(γ∗) is concave.
Finally, we have lim

γ∗→0
G(γ∗) = bSk and lim

γ∗→γ̄∗
G(γ∗) = 0.

Since γ̄∗ > γS, according to the intermediate value theorem, there is a non-empty
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set of parameters C such that F(γ∗) and G(γ∗) intersect twice in the plane R+ × R+

and give rise to two real and positive solutions for the steady-state growth rate noted
γ∗1 and γ∗2 . Therefore, we define the low BGP as γL ≡ min(γ∗1 , γ∗2) and the high BGP
as γH ≡ max(γ∗1 , γ∗2).

γ∗

bSk

γBγHγL

bLk

bHk

0
•
•

•

•

F(γ∗)

G(γ∗)

b∗k

b̂∗k

γ̂∗ γ̄∗

Figure 1: The steady-state

In our setup, the multiplicity of BGPs comes from the interaction between the
Keynes-Ramsey rule and the government budget constraint. The intuitive explanation
is the following. A low rate of economic growth amplifies the crowding-out effect
on productive expenditures by increasing the debt burden which, in turn, further
increases the public debt-to-capital ratio. Conversely, a high rate of economic growth,
by increasing the real interest rate, increases the return of the government bonds
which further reduces public debt accumulation. This interaction between economic
growth and public debt (through productive public spending) generates multiplicity
and leads to the emergence of two BGPs. Therefore, there are two equilibria in the
long run: a low-growth and high-public debt equilibrium and a high-growth and
low-public debt equilibrium.

In what follows, we will successively analyze the effects of tax evasion on growth
and public debt accumulation in low-growth and high-growth economies, respectively.
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3.2. The low steady-state

The low BGP is characterized by a low growth solution and a positive ratio of
public debt-to-capital. Contrary to the Solow solution which defines and no growth
solution (γS = θ = 0), the low BGP gives rise to an economic growth rate slightly
higher than zero. The Solow solution is reached for θ = 0 while the low BGP is
reached for θ > 0 and γL → γS (with γL > γS).

Thus, from (6) and (18), we can approximate the expression of the low steady-state
by the following two relations

γL ≈ θ

bSy
, (23)

where

bSy =

[
(1− η)τ − A−1(gSk )1−α

]
[(1− η)τ ]ε

(1− α)(1− (1− η)τ)ySk


1

1+ε

. (24)

Proposition 4.2 establishes the steady-state impact of tax evasion on economic
growth in the neighborhood of the low BGP.

Proposition 4.2. (Effects of tax evasion on growth and public debt in the neighbor-
hood of the low BGP) In the neighborhood of the low BGP,
(i) there is a negative relation between tax evasion and public debt accumulation.

(ii) tax evasion leads to an increase in economic growth.

Proof. See Appendix B.

In the neighborhood of the low BGP, any increase in tax evasion requires a lower
debt and a higher growth to be compatible with the steady-state. The intuitive
explanation of this result is the following. Tax evasion reduces tax revenues. Other
things being equal, this leads to an increase in the risk premium, the return of the
government bonds and consequently the debt burden in the long run. Thus, in the
absence of another instrument of public finance (such as seigniorage for instance),
the government has no choice but to decrease the deficit-to-output ratio to be able to
pay down the debt. This reduction in public debt reduces the unproductive public
expenditures related to the debt burden and allows the government to have more
resources to finance productive public spending. Finally, since public debt and growth
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are negatively related in the long run, the negative impact of tax evasion on public
debt implies a positive impact on economic growth.

3.3. The high steady-state

Proposition 4.3. (Effects of tax evasion on growth and public debt in the neighbor-
hood of the high BGP) In the neighborhood of the high BGP,
(i) the relation between tax evasion and public debt accumulation is characterized

by a U-shaped curve.

(ii) there is an inverted U-shaped relation between tax evasion and long-run growth.

Proof. See Appendix C

In the neighborhood of the high BGP, we find a critical level of tax evasion
(η̂ ∈ (0, 1)) such that the relation between tax evasion and growth is reversed. At low
levels, the impact of tax evasion on growth is positive. At high levels, the impact of
tax evasion on growth is negative. This is explained by the dual effect that tax evasion
exerts on long-run growth. On the one hand, tax evasion positively affects long-run
growth by stimulating capital accumulation and investment through the channel of
the disposable income of households. On the other hand, tax evasion generates a
reduction of the productive public expenditures provided by the government which
has a detrimental impact on long-run growth. When the first effect dominates, the
impact of tax evasion on growth is positive and conversely. As before, since public
debt and growth are negatively related, the effects of tax evasion on growth and
public debt are symmetric. Therefore, the threshold of tax evasion that maximizes
growth minimizes the public debt ratio. At low levels, tax evasion reduces public
debt (as in the neighborhood of the low BGP) but high levels of tax evasion lead to
an increase in public debt in the long run.

4. Transitional dynamics

4.1. The reduced-form

To study the dynamics of the model outside the steady-state, we compute a
two-variable reduced form (see Appendix D). The reduced-form of the model can
either be expressed by two relations in ck and gk or in ck and bk. For convenience, we

12



will study the topological behavior of the low BGP by resorting to the reduced-form
in ck and gk while the topological behavior of the high BGP will be determined from
the reduced-form in ck and bk.

ċk
ck

= rt − ρ
σ

+ ck + gk − yk,
ġk
gk

= M(gk)
gk

[
θAgαk
bk

+ ck + gk − yk
]
,

(25)

where

M(gk) = (1 + ε)[(θ + (1− η)τ)yk − gk]gk
εα[(θ + (1− η)τ)yk − gk]− (1− α)gk

. (26)

The first relation of system (25) corresponds to the Keynes-Ramsey rule that
characterizes the consumption behavior while the second relation establishes the law
of motion of productive public expenditures. As previously mentioned, we can also
express the second relation as the law of motion of public debt where productive
public spending is a function of public debt.


ċk
ck

= rt − ρ
σ

+ ck + gk − yk,

ḃk
bk

= θAgαk
bk

+ ck + gk − yk.
(27)

In both reduced-forms, there is one jump variable (the ratio of consumption-to-
capital ck) and one predetermined variable (the ratio of productive public expenditures-
to-capital gk or the ratio of public debt-to capital bk). The ratio of productive public
expenditures-to-capital is a predetermined variable since gk depends on bk and bk can
never jump because bt and kt are predetermined ∀t.

In order to study the local stability of the BGPs, we resort to linearized forms of
systems (25) and (27) in the neighborhood of BGP i (i ∈ {L,H}).

(
ċk
ġk

)
= Ji

(
ck − c∗ki
gk − g∗ki

)
or

(
ċk
ḃk

)
= Ji

(
ck − c∗ki
bk − b∗ki

)
(28)

where Ji is the Jacobian matrix in the neighborhood of BGP i. Since there is one
predetermined variable and one jump variable, the Blanchard-Kahn conditions are
fulfilled if and only if the Jacobian matrix contains two opposite-signs eigenvalues.
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Thus, to analyze the local determinacy or indeterminacy of the BGPs, we study
the following characteristic polynomial of degree 2 associated with the steady-state i

P i(λ) = λ2 − T (Ji)λ+D(Ji) = 0, (29)

where the roots of the characteristic polynomial (λ1 and λ2) correspond to the
eigenvalues of the Jacobian matrix and T (Ji) and D(Ji) are respectively the trace and
the determinant of the Jacobian matrix in the neighborhood of the steady-state i. In
order to study the topological behavior of each steady-state, the following proposition
successively establishes the determinant and the trace of the high and the low BGPs
for low values of the deficit target7.

Proposition 4.4. (Determinant and trace of the Jacobian matrix in the neighbor-
hood of BGP i). For low values of θ (i.e. θ → 0), the determinant and the trace of
the Jacobian matrix in the neighborhood of BGP i are the following.

(i) In the neighborhood of the Barro BGP:

D(JB) = −γBcBk

T (JB) = −γB + cBk

(ii) In the neighborhood of the Solow BGP:

D(JS) = −M̃
(
gSk
)
cSk (1− α)[1− (1− η)τ ]σ−1A

(
gSk
)α−1

T (JS) = cSk + M̃
(
gSk
) [

1− αA
(
gSk
)α−1

]
where M̃(gSk ) = M(gSk )

∣∣∣
θ→0

.

Proof. See Appendix E.

4.2. Local stability of the Barro BGP

From Proposition 4.4, we can directly establish the determinacy of the Barro BGP
as follows.

7In order to obtain an endogenous growth solution, the deficit ratio must be sufficiently low.
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Proposition 4.5. (Determinacy of the Barro BGP) The Barro BGP is locally
determined (i.e. saddle-path stable) for any values of the parameters.

Proof. From Proposition 4.4, it is clear that the determinant of the Barro BGP is
always negative. Therefore, PB(0) = −γBcBk < 0 and the Jacobian matrix in the
neighborhood of the Barro BGP contains two opposite-signs real eigenvalues. This
ensures the fulfillment of the Blanchard-Kahn conditions and, therefore, the local
determinacy of the Barro BGP.

4.3. Local stability of the Solow BGP

The determinacy of the Solow BGP is more complicated to establish since it
crucially depends on the sign of M̃(gSk ) and, consequently, on the value of the
elasticity of the risk premium. Specifically, three configurations are possible. First,
if D(JS) < 0, the Jacobian matrix will possess two opposite-signs eigenvalues and
the Solow BGP will be saddle-path stable. Second, if D(JS) > 0 and T (JS) > 0, the
Jacobian matrix will contain two eigenvalues with positive real parts and the BGP
will be overdetermined (unstable). This configuration, which corresponds for instance
to the case where ε→ 0 and η → 0, has extensively been studied by Minea and Villieu
(2012). Finally, if D(JS) > 0 and T (JS) < 0, the two eigenvalues of the Jacobian
matrix will have negative real parts and the Solow BGP would be undetermined
(stable). The transition between the second case and the third case is featured by
a Hopf bifurcation. At that point, the Jacobian matrix contains a pair of complex
conjugate eigenvalues, with real parts equal to zero.

In what follows, in order to characterize the local dynamics of the Solow BGP,
we will consider the elasticity of the risk premium as our bifurcation parameter8. In
a model close to ours but without risk premium and tax evasion (i.e. ε = η = 0),
Minea and Villieu (2012) have indeed shown that the Solow BGP is always unstable.
Therefore, we will analyze the values of ε at which M̃(gSk ), and then the determinant
and the trace of the Jacobian matrix, change sign in the neighborhood of the Solow
BGP.

Lemma 4.1. The expression of the value of ε at which M̃(gSk ) changes sign (noted
ε̃) is given by

8We could also consider the tax evasion parameter to characterize the value at which a Hopf
bifurcation appears. However, in that case, is is more complicated to propose analytical proofs as
the expression of the bifurcation parameter would be given by an implicit function.
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ε̃ = (1− α)gSk
α(1− η)τySk − αgSk

.

Proof. In order for the stock of public debt to be positive, the numerator of M̃(gSk )
must be positive. Therefore, we obtain the expression of ε̃ by equalizing the denomi-
nator of M̃(gSk ) to zero (εα[(1− η)τySk − gSk ]− (1− α)gSk = 0).

Lemma 4.2. The Hopf bifurcation occurs at the unique point εh defined as

εh = (1− α)gSk cSk + (αySk − gSk )[(1− η)τySk − gSk ]
[(1− η)τySk − gSk ][gSk − α(ySk − cSk )] .

Proof. The expression of the value of the elasticity of the risk premium at which
a Hopf bifurcation occurs stems from the equalization of the trace of the Jacobian
matrix in the neighborhood of the Solow BGP to zero (T (JS) = 0).

Proposition 4.6. (Determinacy of the Solow BGP) The topological properties of
the Solow BGP can be summarized as follows :

(i) if ε > ε̃, the Solow BGP is saddle-path stable.

(ii) if ε < ε̃ and ε = εh (where εh < ε̃), a Hopf bifurcation occurs in the neighborhood
of the Solow BGP. Thus, when ε < εh, the Solow BGP is overdetermined
(unstable) and when ε > εh, the Solow BGP becomes undetermined (stable).

Proof. Let us successively consider the case ε > ε̃ and the case ε < ε̃.

(i) If ε > ε̃, then M̃(gSk ) > 0 and D(JS) < 0. In that case, the Jacobian matrix in
the neighborhood of the Solow BGP contains two opposite signs eigenvalues,
namely λ1,2 = 1

2

[
T (JS)±

√
T (JS)2 − 4D(JS)

]
. Hence, the Solow BGP is

therefore saddle-path stable.
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(ii) If ε < ε̃, then M̃(gSk ) < 0 and three different cases are possible. First, if ε = εh

where εh < ε̃, we have D(JS) > 0 and T (JS) = 0. In this case, the Jacobian
matrix contains two complex conjugate eigenvalues

(
λ1,2 = ±i

√
D(JS)

)
and

a Hopf bifurcation occurs. Second, if εh < ε < ε̃, then the determinant of
the Jacobian matrix in the neighborhood of the Solow BGP is positive while
its trace is negative, meaning that both eigenvalues have negative real parts.
In this case, the Solow BGP is stable. Third, if ε < εh < ε̃, then both the
determinant and the trace of the Jacobian matrix in the neighborhood of the
Solow BGP are positive, meaning that both eigenvalues have positive real parts.
Therefore, the Solow BGP is overdetermined (unstable).

ε
ε̃

D(JS) < 0

εh

D(JS) > 0 and T (JS) > 0 D(JS) > 0 and T (JS) < 0
saddle-pathoverdetermined (unstable) undetermined (stable)

Figure 2: Local stability of the Solow BGP depending on the parameter ε

Table 1 proposes a numerical illustration showing the existence of Hopf bifurcations
occuring at the Solow BGP for a constellation of parameters. Our baseline calibration
is based on reasonable values of parameters. The discount rate is fixed at ρ = 0.1
and the risk-aversion coefficient is σ = 1. Regarding the technology, the total factor
productivity parameter is set at A = 0.6 and the share of productive public spending
is α = 0.35 in order to obtain a capital share (0.715) close to that of Gomme et
al. (2011). Following Trabandt and Uhlig (2011) and Gomes et al. (2013), the
income tax rate is fixed at τ = 0.5. In order to obtain a realistic economic growth
rate, we set η = 0.18. Initially, we consider θ = 0 to illustrate the zero-growth case.
Thereafter, we will analyze the case where θ > 0 to go beyond Proposition 4.6 and
numerically explore the existence of Hopf bifurcations in the neighborhood of the low
BGP (and not only in the neighborhood of the Solow BGP). Table 1 provides several
numerical simulations showing the robustness of the Hopf bifurcation’s occurence in
the neighborhood of the Solow and the low BGPs for numerous sets of parameters.

Table 1 shows that aggregate instability emerges at low levels of the elasticity
of the risk premium (when ε < εh). Besides, we can observe that the value of the
elasticity of the risk premium at which the dynamics of the model in the neighborhood
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θ 0 0.005 0.01 0.02
η 0.175 0.18 0.185 0.18 0.18 0.18
τ 0.5 0.5 0.5 0.5 0.48 0.52
εh 11.6287 11.6267 11.6312 13.1382 15.2915 19.8982
g∗k
L 0.0936 0.0925 0.0913 0.0957 0.0918 0.01108

c∗k
L 0.1682 0.1683 0.1683 0.1670 0.1658 0.1634

b∗y
L 0.4221 0.4199 0.4177 0.4122 0.3964 0.4194

γ∗L 0 0 0 0.0012 0.0025 0.0036
Lyap. coef. -1.415e+05 -3.672e+05 -2.3579e+06 -4.8848e+04 -3.1733e+05 -7.9899e+03

Table 1: Bifurcation points and Lyapunov coefficients for a constellation of parameters

of both the Solow and the low BGP dramatically changes is higher as the level of tax
evasion and the deficit ratio increase. Therefore, the elasticity of the risk premium
must be higher when tax evasion and the deficit increase in order to prevent low
growth-economies from falling into an indeterminate equilibrium.

The last row of Table 1 also provides an important information about the nature
of the Hopf bifurcation. Simulations, run with ©matcont and presented in Table 3,
show that the so-called first Lyapunov coefficient is always negative for numerous
sets of parameters. This means that the Hopf bifurcations are supercritical and lead
to the emergence of stable limit-cycles. Therefore, orbitally stable limit cycles occur
for both the the Solow BGP and the low BGP with positive deficit ratio. Figure 3
depicts the family of limit-cycles bifurcating from the Hopf point for our baseline
calibration.

5. The model with endogenous tax evasion

In this section, we extend the previous framework to the case where tax evasion
is endogenous. To this end, we now consider that households make an effort et to
evade taxes such that et ∈ (1,∞) and the government invests resources noted ht to
fight against tax evasion. Both et and ht are endogenous variables. Thus, households
no longer evade ητyt but a portion of taxes η(et)τyt where

η(et) = η0Γ(et), (30)

18



Figure 3: Family of limit-cycles bifurcating from the Hopf point

where η0 corresponds to the initial level of tax evasion and Γ(et) is an increasing and
concave function (Γ′(et) > 0 and Γ′′(et) < 0). In addition, η(1) = η0 and lim

et→∞
= 1/η0

so that η(et) ∈ (η0, 1). To satisfy these properties, we assume that Γ(et) := eβt where
β ∈ (0, 1).

In addition, in order to fight against tax evasion, the government devotes ressources
noted ht that evolve according to the following dynamics

ḣt = ξ [η(et)− η̄]ht, (31)

where η̄ represents the level of tax evasion targeted by the government and ξ is a
strictly positive parameter denoting the speed of adjustment between the current
and the targeted levels of tax evasion. The target η̄ can also correspond to the
requirements of the international organizations that may impose to the policymakers
to improve their fiscal discipline to grant loans.

Henceforth, the government faces the following budget constraint

ḃt = Rtbt + gt − [1− η(et)]τyt − htet, (32)

where the expression of Rt is given by (14) and the real interest rate is similar to that
of the model with exogenous tax evasion: rt = (1− α)[1− (1− η(et))τ ]yk.

For households, ht contributes to increase the cost of tax evasion. Therefore, the
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new budget constraint of the representative household is expressed as follows

k̇t + ḃt = [1− P(.)]Rtbt + [1− (1− η(et))τ ]yt − ct − htet, (33)

where ht denotes the unit cost of the effort to evade taxes and htet is the total cost.
Thus, from the first order condition of the hamiltonian with respect to et, we

obtain the level of efforts chosen by households et to evade taxes

et =
(
η0βτyk
hk

) 1
1−β

. (34)

In equation (34), we can notably observe that contractionary fiscal policies lead
to more tax evasion, in line with Allingham and Sandmo (1972) and Cerqueti and
Coppier (2011).

In what follows, we will successively study the properties of the model with
endogenous tax evasion in the steady-state and the transitional dynamics in the
neighborhood of the two BGPs.

5.1. The long-run solution

As in the exogenous tax evasion case, the steady-state solution is obtained at the
intersection between two relations derived from the Keynes-Ramsey rule, the deficit
rule and the government budget constraint (see Appendix F). The steady-state is
overall similar to the case where tax evasion is exogenous but a new relation describing
the long run tax evasion, that positively depends on long run growth and the level of
tax evasion targeted by the government, appears

η(e∗) = γ∗

ξ
+ η̄. (35)

When tax evasion is endogenous, it is however rather difficult to extract analytical
expressions for the long run economic growth rate and the long run public debt-to-
capital ratio, even in the case where θ → 0. Consequently, we resort to numerical
simulations (see Figure 4) and show that the steady-state solution is similar to that
of the exogenous tax evasion case. As previously, when tax evasion is endogenous,
the model is characterized by a low-growth and high-public debt solution and a
high-growth and low-public debt solution.
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Figure 4: The steady-state solution

Further on, we study the long run effects of a change in the level of tax evasion
targeted by the government and the elasticity of the risk premium. Figure 5 and
Figure 6 respectively summarize the impact of an increase in the tax evasion target
and the deficit target on public debt, growth and tax evasion in the neighborhood of
both BGPs. In addition, in order to obtain normative results, we study the effects of
a change in the tax evasion target and the deficit target on long run welfare.

In the neighborhood of the low BGP, any increase in the targeted level of tax
evasions leads to an increase in growth, welfare and tax evasion and a decrease in
public debt. In low-growth economies, one can observe that η(e∗) ≈ η̄, thereby
explaining the positive impact of an increase in the tax evasion target on the degree
of tax evasion in the economy. This positive relation between the targeted level of tax
evasion and tax evasion generates an increase in the debt burden by increasing the
risk premium, which, in turn, decreases public debt and increases long run growth
and long run welfare (since public debt and growth are negatively related). In the
neighborhood of the high BGP, positive variations of the tax evasion target give
rise to threshold effects. The relation between the tax evasion target and growth,
welfare and tax evasion is characterized by an inverted U-shaped curve while there is
a U-shaped relation between the tax evasion target and the public debt ratio. The
rationale behind these nonlinearities is the following. A higher target of tax evasion
(i) allows reducing public debt and consequently enhancing growth and welfare and
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Figure 5: Effects of a change in η̄
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Figure 6: Effects of a change in θ
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(ii) reduces the productivity of public expenditures leading to a decrease in growth
and welfare and an increase in public debt. Since tax evasion depends on economic
growth in the long run, there is a threshold effect in the tax evasion target-tax evasion
nexus as well.

In Figure 6, we explore the impact of a change in the deficit ratio on growth,
welfare, public debt and tax evasion in the long run. Alongside the high BGP, the
effect of deficit on growth is double. It increases the resources available to finance
public expenditures (positive effect) and increases unproductive public spending by
rising the debt burden (negative effect). These two contradictory effects result in an
inverted U-shaped relation between the deficit ratio and long run growth and, since
they are positive functions of growth, between the deficit ratio and long run welfare
and long run tax evasion. Symmetrically, an increase in θ gives rise to a U-shaped
curve between the deficit ratio and public debt accumulation. Along the low BGP,
the increase in the deficit ratio always reduces the debt burden, and then public debt,
and therefore improves growth and welfare and rises tax evasion in the steady-state.

The presence of threshold effects between the tax evasion target and growth,
welfare and public debt on the one hand, and between the deficit ratio and growth,
welfare and public debt on the other, suggests the existence of interior solutions for
an optimal policy mix composed of the tax evasion target and the deficit ratio in
the neighborhood of the high BGP. Figures 7 and 8 derive the optimal policy mix in
terms of growth and welfare, respectively, while Figure 9 depicts the policy mix that
minimizes public debt. Overall, we can observe that the optimal solution is roughly
the same. Based on our baseline calibration, the government should fix the deficit
target approximatively at 1.3% and the tax evasion target at around 50% in order to
maximize economic growth and intertemporal welfare and to minimize public debt.

5.2. Determinacy

Outside the steady-state, the model with endogenous tax evasion can be summa-
rized by a three-variable reduced form in ck, bk and hk

ċk =
(
rt − ρ
σ

+ ck + gk − yk
)
ck,

ḣk = [ξ (η(et)− η̄) + ck + gk − yk]hk,

ġk = K(.)
{

(1 + ε)
[
θyk
bk

+ ck + gk − yk
]
−x(.) ḣk

hk

}
,

(36)

where the expression of the constant K(.) and the function x(.) ≡ x(gk, hk) are given
in Appendix G.
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Figure 7: The growth-maximizing policy mix (high BGP)

Figure 8: The welfare-maximizing policy mix (high BGP)

The system (36) is composed of one jump variable (ck) and two predetermined
variables (hk and gk). Therefore, the BGP i (i ∈ (L,H)) is locally determined if
and only if the Jacobian matrix associated with a linearized form of the system (36)
contains two negative eigenvalues and one positive eigenvalue. In a three-dimensional
system, a Hopf bifurcation can appear if the Jacobian matrix contains one negative
eigenvalue (with no imaginary part) and a pair of conjugate complex eigenvalues
(with no real part). Thus, when the Jobian matrix is characterized by three negative
eigenvalues, the economy is stable (overdeterminacy of the BGP) while two positive
eigenvalues and one negative eigenvalue generate aggregate instability (indeterminacy
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Figure 9: The public debt-minimizing policy mix (high BGP)

of the BGP).
Since it is rather difficult to derive analytical results when tax evasion is endoge-

nously determined, we use numerical simulations to examine the local stability of both
BGPs9. Our simulations highlight that the Jacobian matrix in the neighborhood of
the high BGP always contains two negative and one positive eigenvalues. Therefore,
since there are two jump variables and one predetermined variable in the system (36),
the Blanchard-Kahn conditions are fulfilled and the high BGP is always locally stable.
Table 2 reports the eigenvalues of the Jacobian matrix associated with system (36) in
the neighborhood of the high BGP.

However, in the neighborhood of the low BGP, Figure 10 shows that aggregate
instability may emerge under some conditions. Specifically, depending on the level
of tax evasion targeted by the government (η̄) and the speed of adjustment of the
current level of tax evasion to this target (ξ), the low BGP might be undetermined
(stable) or overdetermined (unstable). A Hopf bifurcation emerges at the point where
the system switches from stability to instability. Thus, the “frontier stability” depicts
the different pairs of values (ξ, η̄) such that Hopf bifurcations occur. We can observe
that stability nonlinearly depends on the speed of adjustment ξ and the tax evasion
target η̄. More precisely, aggregate instability appears below the stability frontier.
Above the stability frontier, the low BGP is stable. Therefore, the emergence of
aggregate instability in the neighborhood of the low BGP depends on the behavior
of the government towards tax evasion. Specifically, when the government does not

9The values of parameters are similar to those of the exogenous tax evasion case.
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HHH
HHHη̄

ξ 1 5 10 50

0.1039 0.1101 0.1109 0.1116
0.05 -0.0145 -0.0135 -0.0133 -0.0132

-0.0540 -0.1315 -0.2257 -0.9781
0.0948 -0.4037 -0.7734 0.1008

0.30 -0.1059 0.0996 0.1002 -0.0123
-0.0110 -0.0121 -0.0122 -3.7285
-0.1526 -0.6510 -1.2725 -6.2428

0.65 0.0878 0.0915 0.0920 0.0924
-0.0055 -0.0078 -0.0081 -0.0083
0.1000 -0.6671 -1.3560 -6.8661

0.90 -0.0296 0.0842 0.0824 0.0810
-0.0093 -0.0062 -0.0052 -0.0037

Table 2: Eigenvalues of the Jacobian matrix (high BGP)

seek to reduce tax evasion too quickly (low ξ), the tax evasion target should be high
to prevent low-growth economies to face aggregate instability. However, beyond a
certain value of ξ (around 8.2% in our simulations), the government can fix a lower
target of tax evasion and remain in a stable equilibrium.

Figure 10: The stability frontier (low BGP)
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6. Conclusion

In this paper, we have developed an original theoretical framework to study the
relation between tax evasion and public debt accumulation. The economy is described
by an endogenous growth model where households strive to evade an exogenous
portion of taxes in order to increase their disposable income. The model gives rise to
several interesting results. First, the interaction between the intertemporal behavior
of households and the government budget constraint generates two BGPs in the long
run. This feature has allowed us to analyze the effects of tax evasion on public debt
in both low-growth and high-growth economies. We have thus shown that the model
exhibits a U-shaped relation between tax evasion and public debt accumulation in
high-growth economies while the impact of tax evasion on public debt is always
negative in low-growth economies. In high-growth economies, the threshold effect
appears because of the two antagonist effects that tax evasion exerts on growth
(namely, an increase in the efficiency of the private sector and a decrease in the
productivity of public expenditures). By contrast, in low-growth economies, as tax
evasion increases, the government must reduce the deficit target to be able to pay
the interest on the debt, thereby leading to a decrease in the public debt ratio.

In addition, our model exhibits complex transitional dynamics. Specifically,
we have established that the high BGP is always saddle-path stable and that the
determinacy of the low BGP depends on the value of the elasticity of the risk premium.
Indeed, as the value of the elasticity of the risk premium decreases, the topological
behavior of the low BGP moves from local determinacy to local under-determinacy
to local over-determinacy. As long as the steady-state is under-determined, the BGP
is stable. However, when we cross the point at which the steady-state becomes
over-determined, a Hopf bifurcation occurs and aggregate instability appears in the
neighborhood of the low BGP. Moreover, we have provided some numerical simulations
suggesting that the elasticity of the risk premium should be higher as tax evasion
increases in order to prevent low-growth economies to face aggregate instability.

When have then extended the initial setup to consider the optimizing behavior
of households towards tax evasion. In this configuration, households make efforts to
evade taxes and the government invests resources to combat tax evasion. Moreover,
the government follows a rule to reach a certain target of tax evasion. Thus, we have
obtained an endogenous expression of tax evasion that depends on the parameters
of the model. Generally speaking, we have obtained results that are similar, in the
steady-state, to those of the case where tax evasion is exogenous. We find an inverted
U-shaped relation between the level of tax evasion targeted by the government and
public debt in high-growth economies and a negative impact of the tax evasion
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target on public debt accumulation in low-growth economies. Regarding transitional
dynamics, the high BGP is still locally determined and the stability of low BGP
depends on the targeted level of tax evasion and the speed of adjustment between
the current and the targeted levels of tax evasion. To illustrate this point, we have
provided numerical simulations highlighting the existence of specific combinations
of the tax evasion target and the speed of adjustment between the actual and the
targeted levels of tax evasion that might generate aggregate instability in low-growth
economies.

Further work should clearly deepen the reflection about the optimal structure of
public finance for economies with widespread tax evasion. In the spirit of Roubini and
Sala-i-Martin (1995), a potential extension would be to introduce seigniorage as an
instrument to finance public deficits and productive public expenditures. With such
an instrument, governments might choose to increase the seigniorage rate instead of
decreasing the deficit target in order to overcome the detrimental consequences of tax
evasion, especially in low-growth economies. The introduction of money in the model
could also alter the dynamical behavior of the steady-state, which may potentially
lead to even more complex dynamics of the balanced-growth paths.
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Appendix A: Resolution of the model

The household’s program is solved by maximizing (1) subject to the constraints
(2), (3) and (4). The initial values k0 and b0 are given and the transversality conditions
are standard

lim
t→+∞

exp(−ρt)λ1tbt = 0, (A.1)

lim
t→+∞

exp(−ρt)λ2tkt = 0. (A.2)

Thus, the current hamiltonian associated with the household’s maximization
program is

Hc = u(ct) + λ1t {[1− P(.)]Rtbt + [1− (1− η)τ ]yt − ct − zt}+ λ2tzt, (A.3)

where zt is a slack variable defined as zt = k̇t and λ1t and λ2t are the co-state variables
respectively associated with bt and kt.

The first order conditions of the household’s maximization program with respect
to ct, zt, bt and kt are

/ct λ1t = u′(ct) = c−σt , (A.4)

/zt λ1t = λ2t, (A.5)

/bt
λ̇1t

λ1t
= ρ− [1− P(.)]Rt, (A.6)

/kt
λ̇2t

λ2t
= ρ− (1− α)[1− (1− η)τ ]λ1t

λ2t
Agαk , (A.7)

31



The first order conditions have a standard interpretation. Equation (A.5) shows
that the shadow price of the financial wealth (λ1t) is equivalent to the shadow price of
capital (λ2t) and equation (A.5) highlights that the marginal utility of consumption
is equal to the opportunity cost of the financial wealth. In addition, equations (A.6)
and (A.7) provide the dynamics of the shadow prices of the financial wealth and the
capital stock, respectively. Thus, by differentiating (A.5) and equalizing (A.5) and
(A.6), we obtain the tradeoff between government bonds accumulation and private
accumulation, as defined in (14).

In the endogenous tax evasion configuration, the representative household also
optimizes the efforts to evade taxes. In this case, the current hamiltonian is written
as Hc = u(ct)+λ1t {[1− P(.)]Rtbt + [1− (1− η(et))τ ]yt − ct − zt − htet}+λ2tzt and
we get a fifth first order condition with respect to et

ht = η′(et)τyt. (A.8)

Appendix B: Proof of proposition 4.2

Let us replace ySk by its expression in (24) and rewrite the steady-state public
debt-to-GDP ratio in the neighborhood of the Solow BGP as follows

bSy =
f

S
1 (η)

[
fS2 (η)− A−1fS3 (η)

]
ρ


1

1+ε

=: B(η), (B.1)

where

fS1 (η) = [(1− η)τ ]ε , (B.2)

fS2 (η) = (1− η)τ, (B.3)

fS3 (η) =
(
gSk
)1−α

=
[

ρ

A(1− α)(1− (1− η)τ)

] 1−α
α

. (B.4)

Then, we can determine the first derivatives of equations (B.2)-(B.3) with respect
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to η

f ′S1 (η) = −ετ [(1− η)τ ]ε−1 < 0, (B.5)

f ′S2 (η) = −τ < 0, (B.6)

f ′S3 (η) = −A(1− α)2τgSk
αρ

< 0. (B.7)

Hence, we can show that the impact of tax evasion on the ratio of public debt-to-
GDP is negative in the neighborhood of the Solow BGP

B′(η) =

(
bSy
)−1

1 + ε

f ′S1 (η)
[
fS2 (η)− A−1fS3 (η)

]
+ fS1 (η)

[
f ′S2 (η)− A−1f ′S3 (η)

]
ρ

< 0,

(B.8)

since f ′S2 (η)− A−1f ′S3 (η) < 0 for positive values of the tax rate.

Appendix C: Proof of proposition 4.3

To study the impact of tax evasion on growth in the neighborhood of the high
BGP, we determine the first order condition of (20) with respect to η and extract
a critical level of tax evasion (noted η̂) such that its long-run effect on growth is
reversed

∂γB

∂η
≥ 0 if η ≤ η̂, (C.1)

where

η̂ = 1− α

τ
. (C.2)

Following Chen (2003), we assume the tax rate fixed by the government (τ) to
be higher than the elasticity of productive public expenditures (α) because of the
presence of tax evasion in the economy. Therefore, 0 < η̂ < 1.
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In addition, the second order condition shows that the function γB is always
strictly concave in η. This ensures that the threshold η̂ is a maximum

∂2γB

∂η2 = −α[A(1− η)τ ]
α

1−α [1 + (1− η)τ − 2α]
σ(1− α)(η − 1)2 < 0. (C.3)

Appendix D: The reduced form of the model

To obtain a reduced form of the model, let us define the growing variables in
intensive terms: ck = ct/kt, gk = gt/kt, bk = bt/kt and yk = yt/kt. From the
Keynes-Ramsey rule, we determine

ċk
ck

= rt − ρ
σ
− γk, (D.1)

where γk, that corresponds to the growth rate of private capital (γk := k̇t/kt), is
obtained using the IS equilibrium

γk = yk − gk − ck. (D.2)

The local stability of the model can be studied from a reduced-form in ck and gk
or in ck and bk. We successively present both alternatives. For simplicity, we will
resort to the reduced-form in ck and gk to study the local stability of the low BGP
and to the reduced-form in ck and bk for the local stability of the high BGP.

Appendix D.1: The reduced form in ck and gk

The government budget constraint provides a first relation describing the evolution
of the ratio of public debt-to-capital

ḃk
bk

= 1
1 + ε

[
εα− (1− α)gk

(θ + (1− η)τ)yk − gk

]
ġk
gk
. (D.3)

In addition, from (8), we obtain a second expression of the dynamics of bk over
time

ḃk
bk

= θyk
bk
− γk. (D.4)
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Combing (D.3) and (D.4), we can easily extract the dynamics of the ratio of
productive public expenditures-to-capital

ġk
gk

=
(1 + ε) [(θ + (1− η)τ)yk − gk]

[
θyk
bk
− γk

]
εα [(θ + (1− η)τ)yk − gk]− (1− α)gk

. (D.5)

Hence, replacing γk by its expression, we obtain the following reduced-form in ck
and gk 

ċk =
(
rt − ρ
σ

+ ck + gk − yk
)
ck,

ġk =M(gk)
[
θAgαk
bk

+ ck + gk − yk
]
,

(D.6)

where

M(gk) = (1 + ε)[(θ + (1− η)τ)yk − gk]gk
εα[(θ + (1− η)τ)yk − gk]− (1− α)gk

. (D.7)

Appendix D.2: The reduced form in ck and bk

We obtain the reduced-form in ck and bk from equations (8) and (9). After some
manipulations, we get ċk =

(
rt − ρ
σ

+ ck + gk − yk
)
ck,

ḃk = θyk + (ck + gk − yk) bk,
(D.8)

where gk is an implicit function of bk (gk := Ψ(bk)).

Appendix E: Local stability of the BGPs

In the neighborhood the low BGP (for θ → 0), the Jacobian matrix associated
with the system (D.6) is

JS =

 cSk

[
1− αA

(
gSk
)α−1

(1− (1− α)(1− (1− η)τ)σ−1)
]
cSk ,

M̃
(
gSk
)

M̃
(
gSk
) [

1− αA
(
gSk
)α−1

]
 . (E.1)
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From (E.1), we easily obtainD(JS) = −M̃
(
gSk
)
cSk (1−α)α(1−(1−η)τ)σ−1A

(
gSk
)α−1

and T (JS) = cSk + M̃
(
gSk
) [

1− αA
(
gSk
)α−1

]
where M̃(gSk ) corresponds toM(gk) in

the neighborhood of the low steady-state for θ → 0

M̃(gSk ) = (1 + ε)[(1− η)τySk − gSk ]gSk
εα[(1− η)τySk − gSk ]− (1− α)gSk

. (E.2)

Notice that since the growth rate in the neighborhood of the low BGP tends
towards 0 (γS = 0), the consumption-to-capital ratio is expressed as : cSk = ySk − gSk .

In the neighborhood the high BGP (for θ → 0), the Jacobian matrix associated
with the system (D.8) is

JB =
[
cBk 0
0 −γB

]
. (E.3)

Hence, it is clear that the determinant of (E.3) is always strictly negative (D(JB) =
−γBcBk < 0).

Appendix F: The steady-state solution of the model with endogenous
tax evasion

In the endogenous tax evasion case, the steady-state solution of the model can be
obtained at the intersection of the following two relations between long run growth
and the public debt-to-capital ratio. The first relation is derived from the definition of
the public debt-to-GDP target while the second relation comes from the government
budget constraint

b1
k(γ) = θyk

γ
, (F.1)

b2
k(γ) = yk

{
[θ + (1− (1− β)η(e))τ ]yk − gk

[(1− α)(1− (1− η(e))τ)] y2
k [(1− η(e))τ ]−ε

} 1
1+ε

, (F.2)
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where

gk =
{

γσ + ρ

A(1− α)[1− (1− η(e))τ ]

} 1
α

, (F.3)

and

η(e) = γ

ξ
+ η̄. (F.4)

The endogenization of tax evasion makes the derivation of analytical results in
the steady-state rather difficult. Therefore, we implement numerical simulations and
show, in figure 4, that the behavior of the economy in the steady-state is similar to
the one in which tax evasion is exogenous.

Appendix G: The model with endogenous tax evasion: reduced form
and topological behavior of the BGPs

Outside the steady-state, the model with endogenous tax evasion gives rise to a
three-variable reduced form in ck, hk and gk



ċk =
(
rt − ρ
σ

+ ck + gk − yk
)
ck,

ḣk = [ξ (η(et)− η̄) + ck + gk − yk]hk,

ġk = K(.)
{

(1 + ε)
[
θyk
bk

+ ck + gk − yk
]
−x(.) ḣk

hk

}
,

(G.1)

where rt = (1− α)[1− (1− η(et))τ ]Agαk with η(et) = η0e
β
t and the expression of et is

given by

et =
(
η0βτyk
hk

) 1
1−β

. (G.2)

In addition

K(.) = [(θ + (1− η(et))τ)yk − gk + ethk]gk
[(θ + (1− η(et))τ)yk − gk + ethk] [εα− α (Ψ1(.) + Ψ2(.))]− (1− α)gk + ethk

,

(G.3)
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x(.) = Ψ1(.) + Ψ2(.) + ethk
(θ + (1− η(et))τ)yk − gk + ethk

, (G.4)

where

Ψ1(.) = βτη(et)
(1− β)(1− (1− η(et))τ) and Ψ2(.) = βεη(et)

(1− β)(1− η(et))
.

Finally, the government budget constraint provides the new expression of the
public-debt to capital ratio

bk = yk

{
[θ + (1− (1− β)η(et))τ ]yk − gk

[(1− α)(1− (1− η(et))τ)] y2
k [(1− η(et))τ ]−ε

} 1
1+ε

. (G.5)

In order to examine the local stability of the BGPs, we linearize the system G.1
in the neighborhood of the steady-state i (where i ∈ (L,H))

 ċkḣk
ġk

 = Ji
 ck − c

i
k

hk − hik
gk − gik

 , (G.6)

Let us first define the derivatives of η(et), rt, Ψ1(.), Ψ2(.) and x(.) with respect to
gk and hk

ηig := ∂η(et)
∂gk

∣∣∣∣∣
∗i

= αβ

(1− β)
η(ei)
gik

, ηih := ∂η(et)
∂hk

∣∣∣∣∣
∗i

= − β

(1− β)
η(ei)
hik

, rih := ∂rt
∂hk

∣∣∣∣∣
∗i

= −
(

1− α
1− β

)
ei,

rig := ∂rt
∂gk

∣∣∣∣∣
∗i

= α(1− α)
[(

1− α
1− β

)
hik
gik
ei +

(
1−

(
1− η

(
ei
))
τ
)
A
(
gik
)α−1

]
,

Ψ̃1
g(.) := ∂Ψ1(.)

∂gk

∣∣∣∣∣
∗i

= βτ

1− β
(1− τ)ηig

(1− (1− η(ei))τ)2 , Ψ̃2
g(.) := ∂Ψ2(.)

∂gk

∣∣∣∣∣
∗i

=
βεηig

(1− β)(1− η(ei))2 ,

Ψ̃1
h(.) := ∂Ψ1(.)

∂hk

∣∣∣∣∣
∗i

= βτ

1− β
(1− τ)ηih

(1− (1− η(ei))τ)2 , Ψ̃2
h(.) := ∂Ψ2(.)

∂hk

∣∣∣∣∣
∗i

= βεηih
(1− β)(1− η(ei))2 ,

x̃g(.) := ∂x(.)
∂gk

∣∣∣∣∣
∗i

= Ψ̃1
g(.)+Ψ̃2

g(.)+ ei

1− β
hik
gik

α [1− (1− β)η (ei)] τyik + (1− α− β)gik
(1− η(ei))τyik − gk + eihik

,
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x̃h(.) := ∂x(.)
∂hk

∣∣∣∣∣
∗i

= Ψ̃1
h(.) + Ψ̃2

h(.) + β (gik − τyik) ei
(1− β) [(1− η (ei)) τyik − gik + eihik]

.

The Jacobian matrix of the system G.1 in the neighborhood of the steady-state i
can be written as

Ji =

 c
i
k σ−1rihc

i
k Ci

g

hik ξηihh
i
k H i

g

Gi
C Gi

h Gi
g

 (G.7)

where
Ci
g := ∂ċk

∂gk

∣∣∣∣∣
∗i

=
[
1 + σ−1rig − αA

(
gik
)α−1

]
cik

H i
g := ∂ḣk

∂gk

∣∣∣∣∣
∗i

=
[
1 + ξηig − αA

(
gik
)α−1

]
hik

Gi
c := ∂ġk

∂ck

∣∣∣∣∣
∗i

= Ki(.)
[
(1 + ε)− xi(.)

]

Gi
h := ∂ġk

∂hk

∣∣∣∣∣
∗i

= −Ki(.)
[
x̃ih(.)γ + xi(.)ξηih

]

Gi
g := ∂ġk

∂gk

∣∣∣∣∣
∗i

= Ki(.)
[
(1 + ε)

(
1− αA

(
gik
)α−1

)
− x̃ig(.)γi − x(.)

(
1 + ξηig − αA

(
gik
)α−1

)]
Interestingly, we can observe that when η0 → 0, et = η(et) = Ψ1(.) = Ψ2(.) =

x(.) = 0 and K(.)→ (1 + ε)−1 M(gik)|η→0.

39


	Introduction
	The model
	The private sector
	The government
	Equilibrium

	The steady-state
	The multiplicity of BGPs
	The low steady-state
	The high steady-state

	Transitional dynamics
	The reduced-form
	Local stability of the Barro BGP
	Local stability of the Solow BGP

	The model with endogenous tax evasion
	The long-run solution
	Determinacy

	Conclusion
	 Resolution of the model
	 Proof of proposition 4.2
	 Proof of proposition 4.3
	The reduced form of the model
	The reduced form in ck and gk
	The reduced form in ck and bk

	Local stability of the BGPs
	The steady-state solution of the model with endogenous tax evasion
	The model with endogenous tax evasion: reduced form and topological behavior of the BGPs

