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Abstract 

In markets where production has adverse externalities, policy makers may 

wish to increase welfare by imposing a cap on market entries. In this 

paper, we examine the implications that the cap has on the firms’ 

investment equilibrium policy and on social welfare in the presence of 

market uncertainty. In contrast with previous literature, we explicitly 

model the present externality and then let the social planner choose the 

cap level maximizing welfare. We find that: i) if the consideration of the 

option value triggers investment at price above the social marginal cost of 

production, then it is optimal to have no cap at all; ii) otherwise, the cap 

should be set on the current market quantity and a ban on further market 

entries should be announced. 
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1. Introduction 

Caps exist in a variety of markets and activities – from fishing
1
 to trade and foreign 

investment, taxis and all the way to immigration. The discussion concerning their 

economic impact has recently been reignited by President Trump’s statements 

concerning the possibility of US withdrawing from international trade agreements, 

which, in the past two decades, have eliminated many import quotas (The Economist, 

2018), and the need of tightening immigration quotas
2
 (The Economist, 2017). 

 

One of the main reasons why caps are used is that, as economic intuition suggests, if 

production costs are not fully internalized by producers, a cap on the aggregated 

market quantity may increase social welfare. This is because the cap prevents 

production from reaching the range where output is sold at a price not covering its 

social cost of production. This may be the case when, for instance, a negative 

externality such as pollution is associated with production, or when the entry of 

foreign firms negatively impacts the performance of the domestic industry
3
. 

 

The seminal work by Bartolini (1993) was the first study of how a cap impacts the 

market equilibrium within a dynamic setting characterized by uncertain market 

conditions and irreversible investment prior to production. His analysis has shown 

that the existence of the cap leads to investment dynamics which are profoundly 

                                                 

 

 
1
 See e.g. Birkenbach et al. (2017). 

2
 Note that the term “quota” usually stands for the share of a total assigned to a specific group (see e.g. 

OECD, 2006). Hence, in terms of actual impact, setting a quota is equivalent to setting a cap on the 

migration level allowed to the targeted group.  
3
 See e.g. Chao and Eden (2003) on the adoption of foreign investment quotas, Calzolari and 

Lambertini (2007) on the use of voluntary export restraints and Pennings (2005) on the impact of 

tariffs, corporate taxes and investment subsidies.  

.  
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different from those usually portrayed by the literature on irreversible investment 

under uncertainty. This literature, summarized by Dixit and Pindyck (1994), has 

shown that in a decentralized setting, when no cap is present, firms invest (in order to 

enter the market) sequentially. It has also shown that due to the uncertain future 

profits and the irreversibility of their initial investment, firms invest only when the 

output price is sufficiently above the marginal cost of production in order to account 

for the option value which is implicitly lost once investment takes place. Differently, 

as Bartolini (1993) firstly showed, introducing a cap on the aggregate market quantity 

gives rise at a certain point in time to a “competitive run”. Firms enter the market 

sequentially only up to a certain point in time, and then a run starts, exhausting at 

once the residual investment slots. During the run, output is sold at a price below its 

marginal cost of production. This is because firms fear that they will lose their entry 

option while postponing investment in order to wait for higher prices. Note in fact 

that, once the cap becomes binding, their option to invest is worthless. Thus, they 

abstract from the consideration of the option value associated with the investment 

decision and rush to enter the market. The run reduces welfare as it brings on the 

market additional output at once and at a price below the marginal cost of production 

 

Several studies (which we briefly review later in this section) have followed Bartolini 

(1993) in analyzing the market equilibrium with a cap on aggregate quantity under 

investment irreversibility and market uncertainty. Both Bartolini (1993) and these 

follow-up studies motivate the introduction of the cap on the basis of certain welfare 

gains that could be achieved by restricting private economic actions and agree on the 

welfare loss induced by the run. They all take the level of the cap as exogenously set 

or, in Bartolini’s words, as the “result of a more general political equilibrium” 
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(Bartolini, 1995), where the harmful impact of private economic actions is taken into 

account. This makes, as one can immediately see, the welfare analysis not conclusive 

and poses the  challenge of completing it by, first, being explicit in the welfare 

function about the externalities due to private economic actions. Hence, endogenizing 

the cap by setting it at a level maximizing the welfare function is a second natural 

step.
4
 As far as we know, no research has addressed this issue, a challenge that 

motivates and sets the focus of our paper.  

 

In this paper, we set up a model analyzing market entry in the presence of a cap on 

aggregate investment where we explicitly consider the presence of an externality 

associated with private investment. We then determine the optimal investment policy 

set by private firms acting in a decentralized setting and the optimal level of the cap to 

be set by a planner maximizing the welfare associated to the considered market.  

 

Our main findings are as follows. First, we identify the circumstances under which the 

output price triggering firms’ entry is above the social marginal cost of production, 

due to the consideration of the option value associated with the investment decision 

and in spite of the externality. The intuition is straightforward. Assume, for example, 

that only the 80% of the social marginal cost falls on the producers, while, once taken 

into account the option value, a firm should enter the market only when the output 

price is 50% higher than the private marginal cost. Hence, market entry occurs only 

when the output price is 20% higher than the social marginal cost. Thus, as this 

additional investment leads to a welfare gain, a welfare-maximizing planner should 

                                                 

 

 
4
 Note that this issue is explicitly raised by Bartolini (1993, Section 2.1). 
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not introduce any cap on market entries. In contrast, when the “uncertainty premium” 

does not allow counterbalancing the externality, entry would occur at a price that, 

even if above the private marginal cost, is below the social one. When this is the case, 

as welfare is decreasing in the level of aggregate investment, stopping further entries 

is the optimal policy. Note that in this case the optimal policy depends on the history 

of the targeted market. In fact, as some market capacity may already exists when the 

introduction of a cap is considered and this capacity cannot be removed, the optimal 

cap to be set is bounded from below and must be set equal to the lowest feasible level, 

that is, the market capacity already present. As one can immediately see, our first 

finding has relevant implications for the design of policies contemplating the 

introduction of a cap. We show in fact that the introduction of a cap is not consistent 

with its assumed target of maximizing welfare, as, depending on the circumstances, it 

deters welfare from increasing or, if the planner sets a cap allowing for further market 

entries, it decreases welfare.  

 

Second, we show that, apart from the welfare implications above, the introduction of a 

cap does not have, from the perspective of the social planner, any positive implication 

when considering the timing of market entries. In fact, first, firms, when entering 

sequentially, keep following the investment policy that they would set in the absence 

of the cap, a policy which results from the mere consideration of the production cost 

privately perceived. Second, the introduction of the cap induces a competitive run 

that, irrespective of the severity of the externality, produces welfare losses.  This is 

because first, during the run, investment occurs when the output price is, due to the 

fear of being excluded from the market, always below the social marginal cost of 
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production, and second, because these welfare losses weight more in present terms as 

they materialize at an earlier date.  

 

In a later study, Bartolini (1995) has shown that the run and its resulting welfare loss 

can be avoided by rationing the right to enter the market. Specifically, he shows that if 

licenses are distributed among firms when the cap is announced, the fear of losing 

their entry option vanishes and firms enter the market sequentially until the cap 

becomes binding. Yet, the model in that article does not contain an explicit modeling 

of the externality which motivates imposing the cap, and therefore cannot search for 

the optimal size of the cap. Instead it takes the size of the cap as exogenous. 

  

We analyze both the case where licenses are issued and the run does not emerge, and 

the opposite case where entry prior to hitting the cap is free. In both cases we find the 

same optimal policy specified earlier regarding the size of the cap, that is, to have no 

cap at all if the externality is not severe enough or, otherwise, to stop immediately 

further entries. This happens because the two cases share two of the main welfare 

losses from a non-optimal cap: (i) allowing the production of welfare-harming units in 

the case where the externality is sufficiently severe; (ii) preventing the production of 

welfare-enhancing units in the case where the externality is not severe enough. Not 

having the run in the rationing case is relevant therefore only to the level of welfare 

under a non-optimal cap (which is higher under licensing on account of not having the 

run) but not to the optimal policy.   
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The following table summarizes our results: 

                    Case 

      Issue 

The externality dominates  

the uncertainty premium 

The uncertainty premium 

dominates the externality 

Welfare losses/gains 

with a non-optimal 

cap (before the run) 

 

Additional output sold at a price above 

the private marginal cost but below the 

social marginal cost of production. 

Additional output sold at a price 

above the social marginal cost of 

production. 

Welfare losses with a 

non-optimal cap 

(during the run) 

 

Additional output sold at a price below 

the private marginal cost of production. 

Additional output sold at a price 

below the private marginal cost 

of production. 

Optimal policy 

 

Stopping further market entries No cap on aggregate investment 

 

Table 1: Summary of results 

 

Among the other studies that have adopted the Bartolini (1993) framework, the most 

prominent ones are, Moretto and Vergalli (2010) and Di Corato, Moretto and Vergalli 

(2013).  

 

Moretto and Vergalli (2010) study how a cap on immigration set by the government 

of a host country affects the decision of potential migrants. They view migration as an 

irreversible investment with uncertain future benefits and study its timing in a real-

options framework. Migration occurs when its profitability, mostly based on the labor 

market conditions in the host country, is high enough to compensate for the migration 

cost and for the value of the option to migrate, which is implicitly lost once left the 

home country. If the host country wishes to control immigration by introducing a cap, 

the Bartolini’s dynamic pattern emerges with a run starting at a certain point in time. 

Last, the authors show that the government may delay the “cap-attack” by creating 

uncertainty about the size of the cap. 

  

Di Corato, Moretto and Vergalli (2013) study the dynamic characterizing the 

conversion of forestland into agricultural land in the short and in the long run. Forest 
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conservation secures the provision of public goods and services for which private 

landowners are not compensated. Their conversion decisions do not take into account 

the induced welfare loss. This motivates the introduction of cap on the aggregate 

amount of developable land. Also here the Bartolini’s dynamic pattern emerges and 

the run leads to the complete exhaustion of the targeted extent of developable land at 

a socially suboptimal pace. The study then considers feasible combinations of second-

best policy tools which may reduce the speed of the conversion process. 

 

The paper remainder is as follows. In Section 2, we present the basic model, i.e. the 

no policy scenario, and identify the optimal investment policy in equilibrium and the 

associated level of welfare. Section 3 considers the scenario where a cap on aggregate 

investment is introduced in a market where firms may freely enter. We present the 

optimal investment policy, characterize and discuss the emergence of a competitive 

run and determine the welfare-maximizing cap. Section 4 considers the scenario 

where a cap is introduced but the right to enter is rationed. We determine the optimal 

investment policy and the welfare-maximizing cap and compare our findings with the 

ones obtained when studying the case of free entry. In Section 5, we illustrate our 

result by proposing two numerical exercises. In the first exercise we show the impact 

of a cap on welfare by comparing welfare accruing under free entry and under 

rationing with the welfare in a no policy scenario and with the welfare accruing when 

following the policies suggested in this paper. In the second exercise we focus on the 

suboptimality of the firms’ entry timing from a social perspective. This is done by 

calculating the expected amount of time by which entries are accelerated with respect 

to the entry timing that would be set in a first-best scenario. Section 6 concludes. The 

Appendix contains the proofs omitted from the text. 
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2. The basic model 

Within a continuous time setting, consider a market for a good named A whose 

demand at each point in time is given by: 

 

(1)  
t

t
t

Q

X
P  , 

 

where Pt and Qt are the price and quantity of good A at time t, respectively. The state 

of demand, Xt, changes stochastically over time according to the following Geometric 

Brownian Motion: 

 

(2)  tttt dZXdtXdX   , 

 

where  and  are constants which measure the drift and the variance of Xt, 

respectively, and dZt is the increment of the standard Wiener process satisfying at 

each t the following conditions: 

 

(3)      dtdZEdZE tt 
2

,0  

 

All firms have an infinitesimally small productive capacity, ΔQ, allowing them to 

produce one unit of A. Each firm, once entered the market, commits to offer 

permanently one unit of A. Thus, Qt represents both the market quantity of good A 

and the number of active firms.  
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All firms face the same cost structure in which, at each point in time, producing one 

unit of A entails an instantaneous social cost equal to M > 0. We assume that part of 

this cost is an externality that firms do not incur. Therefore, their instantaneous cost of 

production is equal to M , where 10   . 

 

Firms are risk-neutral and r denotes the rate at which they discount future payoffs. As 

standard in the literature, we assume that r >  to secure the convergence of the firm's 

value.
5
 Last, note that, in the economy of our model, the present value of the flow of 

operating costs, 
r

M , may equivalently be viewed as an irreversible investment cost 

to be paid when entering the market.  

 

2.1 Optimal investment in the absence of a cap 

Under the setup described above, our model of optimal investment in the absence of 

government intervention is a specific case of the one analyzed in Chapter 8 of Dixit 

and Pindyck (1994). Thus, in this sub-section, we illustrate it following their analysis.  

 

At each instant, each idle firm has to decide whether to enter the market in order to 

produce and supply an additional unit of good A, or not. This decision depends on the 

expected profitability of the investment effort. Therefore, given the current
6
 Q, 

investment takes place only when X is large enough to secure an expected flow of 

revenues covering the flow of operating costs plus the value of the option to wait, 

which is implicitly lost once invested.  

                                                 

 

 
5 See appendix A where the value of the firm is determined.    
6
 In the following, we will drop the time subscript for notational convenience. 
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Let  XQV ,  be the value of a firm active in the market. By a standard no-arbitrage 

analysis
7
, this value is equal to: 

 

(4)     
  r

M

rQ

X
XQYXQV











,  

 

where   > 1 is the positive root of the following quadratic equation: 

 

(5)    02

2
122

2
1  rxx  . 

 

Note that by properties of the Geometrical Brownian motion, if Q will remain forever 

at its current level, then: 

 

  
  r

M

rQ

X
dteM

Q

X
E

t

tr 












 














 




0

 

 

which means that the second and third terms of (4) represent the expected present 

value of the flow of the firm's future profits if Q remains forever at its current level. 

The first term in the RHS of (4) accounts therefore for how future changes in the 

supplied quantity Q, due to further market entries, affect the value of the firm.  

 

Now, let denote the investment threshold function by  QX *
. As standard, some 

boundary conditions are required for its determination. The first one is the following 

Value Matching Condition: 

                                                 

 

 
7
 See Appendix A. 
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(6)     0, * QXQV . 

 

The second one is the following Smooth Pasting Condition: 

 

(7)     0, * QXQVX . 

 

Substituting (4) in (6) and (7) yields: 

 

(8)      Q
r

M
rQX  * , 

 

where 1
1





  is the wedge that, as standard in the real options literature, takes the 

presence of uncertainty and investment irreversibility into account (see e.g. Dixit and 

Pindyck, 1994, Ch. 5).  

 

Note that  QX *
 is an increasing function of Q. This makes sense considering that the 

larger Q, the higher market competition and, ceteris paribus, the higher the expected 

profitability required for triggering further investment. 

 

2.2  Welfare in the absence of a cap 

From a static perspective, the most basic intuition about the welfare that could be 

associated to the market for good A is that if the output price exceeds the social 

marginal cost of production, adding another unit to the market raises welfare. We 
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open this sub-section by bringing this intuition into our model and comparing the 

output price, P, with the marginal social cost, M, for the case where  = 0. Note that 

this is only to cling stronger to the static case. Using (1) and (8), we find that in this 

case the price level triggering additional investments is    
     

 
       . Hence, 

it follows that if 1 , investments take place when MP *  and welfare increases 

as the output price is higher than the marginal social cost of production. In contrast, 

when 1 , welfare decreases as investments take place when the output price is 

below the marginal social cost of production. No gains in welfare may instead be 

associated to additional investments when 1 . Thus, while, on the one hand, the 

presence of an investment externality, illustrated by the parameter 1 , may induce 

investment which is suboptimal from a social perspective, the wedge 1  may 

trigger it at a price high enough to counterbalance the effect of the externality and 

secure a welfare gain.  

 

The deep roots of this intuition make it dominant also in the dynamic and stochastic 

model analyzed here, as the formal derivation of the welfare function conducted in 

this subsection shows. In particular, we find here that 1  is indeed the condition 

for welfare to rise, despite the externality, when an additional unit of good A is 

supplied. 

  

After presenting this intuition, we now turn to the formal derivation of the welfare 

associated to the market for good A. This will be done following Bartolini (1995). Via 

the same procedure illustrated in detail in Appendix A (to determine the value of an 
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active firm), we find that the expected discounted social welfare, given the current 

levels of X and Q, is: 

 

(9)     
 

r

QM

r

QX
XQCXQW











 ln
, , 

 

In (9), we subtract the discounted social cost associated with the production of Q units 

of good A, i.e. 
r

QM  , from the surplus resulting from the supply of those units, i.e. 

 




r

QX ln , while the first term stands for the expected discounted flow of net surplus 

associated with future market entries. In order to determine the term  QC , we impose 

that the following Value Matching Condition: 

 

(10)     0, * QXQWQ , 

 

holds at the investment threshold  QX * . 

Substituting (9) in (10), partially differentiating with respect to Q, using (8), and 

rearranging terms, yields: 

 

(11)   




Q
KQC



1

' , 

 

where: 

 

(12)  
    

0
1

1





 
 r

K

r
M

. 
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Integrating on both sides of (11) yields: 

 

(13)    G
Q

K
QC 







1

1

1 




,  

 

To find the value of the term G, note that when Q  the threshold  QX *
 goes to 

infinity as well. This implies that, as the probability of X hitting the threshold goes to 

0, no further changes in Q are expected, and therefore the value associated with such 

changes is zero. Formally put: 

 

(14)    0lim 


QC
Q

. 

 

 

Since  > 1, (14) and (13) imply that G = 0, and therefore: 

 

 

(15)   
1

1

1 











 Q

K
QC .  

 

Thus, as the intuition presented in the beginning of this sub-section hinted, the 

necessary and sufficient condition for welfare to rise when new firms enter the market 

is 1 .   

 

3. Optimal investment with a cap and free entry  

The possibility that  QC  may be negative could lead policy makers to consider the 

limitation of future investments by setting a cap, Q , on the level of aggregate 
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investment Q. In this section we analyze this case following Bartolini (1993). 

Similarly to the analysis conducted in Section 2.1, we start by considering the value of 

a firm contemplating market entry,  XQV , , as defined in (4). Then, in order to find 

the threshold function  QX *
, we use the Value Matching Condition (6). From here on 

the analysis departs from that conducted above, as Condition (7) should be replaced 

by the following boundary condition: 

 

(16)     0, * QXQVQ
 

 

Bartolini (1993) proves the existence of Condition (16) in Proposition 1 of his article. 

As he shows there, the condition springs from: 

 

(17)       QQXQQVQQXQV  ** ,, . 

 

Condition (17) shows that when the quantity is Q and X hits the corresponding 

threshold level,  QX * , then, by the definition of  QX *  as a threshold level, Q is 

increased by an increment Q  with probability 1. This consideration, together with 

the no-arbitrage condition, explains the equality in (17) between the values 

corresponding to the two states. Dividing on both sides by Q  and taking the limit 

0Q  leads to (16). Note that (6) and (16) are not optimality conditions. They 

should hold for any  QX *
, not necessarily the optimal one, as they merely reflect, 

given a certain threshold, the no-arbitrage condition set on the value of the firm. This 

means that (6) holds for any level of Q and that, in turn, once taken the derivative 

with respect to Q on both its sides, 
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(18)  
  

0
, *


dQ

QXQdV
. 

 

Expanding (18) and using (16) yield the condition: 

 

(19)      
0,

*
* 

dQ

QdX
QXQVX  

 

For (19) to hold, one should have either    0, * QXQVX  or 
 

0
*


dQ

QdX
 . In the 

former case, as one may easily verify, the Smooth Pasting Condition (7) holds, and 

the investment threshold function  QX *
 is, as in the case where no cap is present, 

given by (8). 

 

In the latter case, the Smooth Pasting Condition (7) does not hold and, consequently, 

the threshold function (8) does not apply. To understand how this case should be 

treated, we recall that  QY  represents how future changes in Q affect the value of the 

firm. when Q is already at the cap, no such changes can occur and consequently the 

value associated to these variations is 0. Thus, formally put, we have: 

 

(20)    0QY . 

 

Using (20), (4) and (6), we have that when Q reaches the cap, ,Q  the investment 

threshold is: 
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(21)    Q
r

M
rX   . 

 

Since the Smooth Pasting Condition (7) does not hold in Q  then, by continuity, it 

also does not hold within the interval   QQ,
~

 where, as   ,0
*


dQ

QdX  Q
~

 satisfies: 

 

(22)    .
~* XQX   

 

Substituting (8) and (21) into (22) yields: 

 

(23)   .
1~

QQ 


 

 

Summing up, the optimal investment policy is: 

 

 as long as ,
~
QQ   investment occurs whenever X hits the threshold  QX *

. 

The rising Q makes  QX *
 rise too, so that X is once again below the 

threshold and further investment is postponed until the first time X hits the 

threshold. In Figure 1 below this is described by the move from point E to 

point F;  

 

 if QQ
~

  , then when X hits the threshold  QX *
 investment occurs but, in 

contrast with what would happen in the interval ,
~
QQ   the threshold is not 

increased by the rising Q as 
 

0
*


dQ

QdX
. Thus, X is still at the threshold and 



18 

 

investment continues until the cap becomes binding. In Figure 1 below this is 

described by the move from point G to point H.  

 

 

Figure 1: Investment dynamics. 

 

3.1 Welfare in the presence of a cap on Q and free entry 

In this sub-section, we find the function that describes the welfare associated with the 

considered market when a cap is imposed. Then, we maximize it with respect to Q  in 

order to find the socially optimal level of the cap. To better understand the analysis 

and its results we start with a short explanation of the different types of welfare losses 

induced by a cap. The first type of loss is induced by a cap that is set so low that units 

of good A that could potentially increase welfare are not produced. Similarly, we may 

have a welfare loss caused by a cap that is set so high that it enables the production of 

units that harms welfare. The third type of a welfare loss induced by a cap springs 

from the emergence of the run, as the expected contribution to welfare of each of the 

units added during the run is negative. The reason for that, as shown by (21), is that 

F 

H 

Q 

X 

X
*
(Q) 

Q
~

 Q

E 

G 
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the run occurs at a price level,         , that does not contain the wedge  , 

balancing, as discussed above, the effect of the externality. In particular, by using (1) 

and (21), the expected present value of the welfare stream generated by each unit 

added during the run is  
  

   
 

 

 
       

 

 
  , where the inequality follows 

from  < 1.  

 

After presenting the three types of welfare losses potentially induced by the cap, we 

now turn to the formal analysis.  

 

Following the analysis presented in Section 2.2, the expected discounted social 

welfare in the presence of a cap and free entry is given by: 

 

(24)       
r

QM

r

QX
XQQCQXQW











 ln
,,, . 

 

Note that (24) is almost identical to (9), the function representing welfare in the case 

with no cap. The only difference is that now  QXQW ,,  and  QQC ,  are also 

functions of the size of the cap, Q , and not merely functions of Q and X.  

 

As follows from (24), maximizing the welfare function  QXQW ,,  with respect to 

Q  is equivalent to maximizing  QQC ,  with respect to the same variable. 

  

Once set the focus on the maximization of  QQC , , the following two scenarios 

must be considered: 
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 if Q is set sufficiently close to the current level of Q, specifically, within the 

interval QQQ   , then QQ
~

  and the next time the process X will hit 

the threshold X , a run exhausting instantaneously the residual investment 

slots will be ignited; 

 

 otherwise, if Q is set sufficiently far from the current level of Q, specifically, 

within the interval QQ   , then QQ
~

  and the next increments in Q will 

follow the sequential and incremental investment policy described in the 

section 2 as far as Q is below Q
~

, while a run will start as soon as QQ
~

 .  

 

Let’s then proceed determining  QQC ,  in the two intervals of interest. 

  

3.1.1  QQC ,  when QQQ    

----------------------------------------------- 

Within the interval, QQQ   , when the threshold X  is hit then a run brings Q 

to the cap Q at once. Once reached the cap, no more changes in Q take place and 

welfare is given by the present value of the future flow of net surplus associated with 

a market quantity equal to Q , i.e.,  

 

(25)     
r

QM

r

QX
QXQW











ln
,, , 

 

Evaluating (24) at X , comparing it to (25), applying (21) and simplifying, yields that 

in the range QQQ    the function  QQC ,  is given by: 
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 (26)          
;

lnln
,



 


Q

QQQQQ
KQQC


  

 

The following Proposition 1 presents some of the properties of  QQC , :   

 

Proposition 1: Within the range QQQ   :  

 

i)  QQC ,  is a u-shaped function of Q ; 

 

ii)  At the left end of this range,  QQC ,  satisfies   0, QQC ; 

 

iii) At the right end of this range,  QQC ,  satisfies: 

 

     
;

1

1
,

1














Q

gK
QQC  

  

where       ln1 g  and satisfies 0 < g() < 1 for any  > 1; 

 

iv)  If  
g

1 , then   0, QQC  at the right end of this range, and at a certain 

vicinity to its left, making QQ    the maximizing level of Q in that range; 

 

v)  If  
g

1 , then   0, QQC  throughout this range, making QQ   the 

maximizing level of Q in that range. 

 

Proof: See appendix B.             

 

The logic behind part (ii) of Proposition 1 is that setting QQ   stops any further 

investment and therefore  QQC , , which represents the contribution of future 

entries, is, consistently, equal to 0.  



22 

 

 

Part (iv) shows that if, given the wedge 1 , the externality is relatively weak, i.e. 

  is relatively high, then  QQC ,  is positive within a certain interval and reaches a 

maximum at QQ   . Note that setting the cap at this level implies that, in spite of 

the negative impact of the run, welfare is increasing in Q. Otherwise, as part (v) 

shows, in the presence of a relatively strong externality no welfare gains can be 

achieved by setting a Q higher than the currently available market quantity Q.  

 

3.1.2  QQC ,  when QQ    

----------------------------------------- 

Within the interval QQ   , the initial value of Q is below Q
~

. This means that, until 

the level Q
~

has been reached, future changes in Q will be gradual and occur whenever 

X hits the threshold function  QX *
. The welfare analysis is therefore similar to the 

one, presented in Section 2.2, for the case where no cap has been introduced. In 

particular it will lead once again to (13), only with  QQC ,  at its LHS, instead of 

 QC . The integration constant, G is found using the boundary condition: 

 

(25.1)     
r

QM

r

QX
QXQW











ln
,,

~
, 

   

which is almost identical to (25) from the case in the previous sub-section. Evaluating 

both (24) and (25.1) at QQ
~

 , and equating them to one another yields a boundary 

expression for  QQC ,
~

. Equating this expression to (13), evaluated at QQ
~

 , yields 

the integration constant G. Substituting G into (13) yields: 
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(27)     
,

1

1
,

11










 








 







 Q

g

Q

K
QQC  

 

where     gg 1  and satisfies   10  g  for any  > 1. The following 

proposition shows some properties of  QQC ,  in this range: 

 

Proposition 2: Within the range QQ   , 

 

i)  At the left end of this range,  QQC ,  satisfies: 

  

   
;

1

1
,

1











 Q

gK
QQC  

 

ii)   0, QQC
Q

; 

 

iii)  
1

1

1
,lim













 Q

K
QQC

Q
. 

 

Proof: The three parts of the proposition follow directly from (27).                             

 

Part (i) of the proposition shows continuity at      of the two branches of  QQC , .  

 

Part (iii) of the proposition presents the limit result for Q  going to infinity, a case 

which is equivalent to having no cap at all. Accordingly,  QQC ,  converges to the 

 QC  determined by (15) for the case where no cap was present. This implies that the 

condition for welfare-increasing market entries is 1  in this case too. 
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3.1.3  QQC ,  throughout its entire definition range 

------------------------------------------------------------------ 

We illustrate the properties of the two branches of the function  QQC ,  in Figure 2.  

Figure 2(a) refers to the case where
 





g

1 , Figure 2(b) to the case where 

 





g

11 while Figure 2(c) refers to the case where


 1 . 

 

 

Figure 2(a):  QQC , for
  





g

1
. 

 

Figure 2(b):  QQC ,  for
  


 


g

11
. 

1

1









Q
K  

Q  Q 

 QQC ,  

Q0 

1

1









Q
K  

Q  Q 

 QQC ,  

Q0 
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Figure 2(c):  QQC ,  for


 1 .  

 

In all figures, we note that  QQC ,  equals 0 at the left end of the definition range for

Q , then the function falls to negative values as Q  rises, hits a minimum point within 

the range QQQ    and rises with Q from then onward. In both Figure 2(a) and 

Figure 2(b), the function  QQC ,  turns, as Q  rises, positive at a certain point. This 

occurs within the interval QQQ    for the case where 
 





g

1  and within 

the interval QQ    for the case where
 





g

11 . Differently, as shown in 

Figure 2(c), if 


 1  then,  QQC ,  is negative throughout its definition range.  

 

Note that in all figures,  QQC ,  converges, as Q  tends to infinity, toward  QC , 

that is, the value associated with future market entries for the case where no cap is 

1

1









Q
K  

Q  Q 

 QQC ,  

Q  0 
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present. This limit result is relevant for the definition of a welfare maximizing choice 

of Q . The following Proposition summarizes these results about the optimal cap: 

 

Proposition 3: If 


 1  then the cap should be set at the current level of Q, which 

implies allowing no further changes in Q. Otherwise, if 


 1 , then it is optimal to 

push the cap to infinity, which actually implies having no cap at all.           

 

By Proposition 1 and Proposition 2, once the resulting welfare function is compared 

with the welfare function for the case with no cap, it is clear that, when 


 1 , 

introducing a cap may reduce the welfare losses associated with future market entries. 

However, this is conditional on setting the cap sufficiently close to the current Q. 

Otherwise, the losses due to the occurrence of the run counterbalance the loss 

reduction due to introduction of the cap. These two competing effects lead to the non-

monotonicity of  QQC ,  in the interval QQQ   . However, by the properties 

of  QQC , , in the range of values of Q  securing a loss reduction, the closer the cap 

to the current Q, the lower the loss. Hence, setting the cap at the current market 

quantity Q maximizes welfare, as it implies no further losses, i.e.   0, QQC . Note 

that this is equivalent to banning any further market entry.  

 

In contrast, when 


 1 , as welfare is, as discussed in Section 2.2, increasing in Q, 

introducing a cap would be detrimental for two reasons. First, as, due to the cap, it 

will deter from benefiting from further market entries which, as 


 1 , would 

increase welfare. Second, as, during the run, market entries occur at a price below the 
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social marginal cost and their timing is suboptimal. Hence, setting a higher cap 

increases welfare as the production of further units at a price above the social 

production cost dominates the negative effect of the run, which, as Q  increases, 

takes place later in expected terms. These considerations then suggest that not having 

any cap at all is the policy that maximizes welfare.  

 

4. Optimal cap with rationing 

In this Section, we look at the case where entry licenses are distributed when the cap 

is announced. Each license is for an infinitesimally small increment of Q, i.e. ΔQ, and 

their number covers exactly the gap between the quantity currently available in the 

market and the cap.  

 

Bartolini (1995) considered this case and determined the firms' optimal investment 

policy and the social welfare associated with the resulting market equilibrium. The 

cap level, introduced in order to reduce the impact of investment externalities, was 

exogenously set. In the welfare analysis, the losses associated with those externalities 

were not explicitly modeled and this was crucial for the conclusion that firms follow 

the first-best entry policy until the cap becomes binding. We consider Bartolini’s 

definition of first-best partial. We then depart from his analysis by explicitly modeling 

the presence of an investment externality. We determine the firms' optimal investment 

policy in the presence of a cap and the resulting welfare and then, having welfare 

maximization as a target, we derive the optimal level of the cap.  

 

We avoid the question of how the licenses were distributed, whether by auction, 

lottery, or any other mechanism. We merely assume that the distributing mechanism 
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adopted has no other implications except for providing each license owner with a 

right to invest at any time this owner wishes.
8
 

 

As Bartolini (1995) shows, the competitive run of the free entry case does not emerge 

in the equilibrium of the licensing case. This is because firms holding a license do not 

fear that they will lose their entry option. 

  

Absent the run, the analysis of the firm's optimal policy under licensing is very similar 

to the analysis in Section 2.1 for the case of no cap at all. The only difference is given 

by the presence of a cap binding at a certain point in time. We define, alongside the 

function  XQV ,  that stands for the value of a firm once active in the market, the 

function  XQF ,  that represents the value of a currently idle firm holding the right to 

enter that market. It is worth highlighting that in the case of free entry previously 

analyzed, this option was worthless, i.e.   0, XQF , in that firms’ entry was simply 

based on the zero-profit condition. In the current case, a no-arbitrage analysis, similar 

to one carried out in for  XQV ,  in Appendix A, yields that: 

 

(28)      XQHXQF , , 

 

where  QH  is to be found by imposing the following Value Matching Condition: 

 

(29)       QXQFQXQV ** ,,   

                                                 

 

 
8
 See Bartolini (1995) for a discussion of how alternative mechanisms impact on surplus extraction. 
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and the following Smooth Pasting Condition: 

 

(30)       QXQFQXQV XX
** ,,  . 

 

Note that conditions (29) and (30) stand in place of conditions (6) and (7) in Section 

2.1 which were specific to the case of free entry where, as mentioned above, 

  0, XQF . Despite this small difference from the analysis in Section 2.1, it can be 

easily shown that, once substituted (4) and (28) in (29) and (30), the investment 

threshold function in the licensing case is,  QX *
, as given by (8).  

 

Alongside  QX *
, the solution of the system [29-30] yields an expression for 

   QYQH   from which  XQF ,  can be found once  XQV ,  is determined using 

(8), (16) and (20). 

 

As in the case of a cap under free entry, welfare is given by (24) and the analysis is 

similar to that proposed in Section 2.2, until (13) is obtained, with  QQC ,  at its 

LHS. Then  QQC ,  can be found using the following boundary condition: 

 

(31)    0, QQC . 

 

Condition (31) simply states that when Q is at Q  no more changes in Q are going to 

take place, and therefore the term   XQQC , , which represents the value of such 

changes, should equal zero.  
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By applying (13) in (31), we can determine the integration coefficient G. Then, 

substituting this coefficient in (13) and simplifying yields: 

 

(32)      












 11

11
1

1
,




 QQ

K
QQC . 

 

From (32) it follows that  QQC , , and, by (24) also welfare, is a monotonic function 

of Q  which is either  increasing or decreasing in Q , depending on the sign of 

1 . We illustrate these two cases in Figure 3(a) and Figure 3(b), respectively. 

Both figures show that  QQC ,  equals zero when Q  is set at the current level of Q 

and converges to 
1

1









Q
K  as Q  goes to infinity. The main difference is about this 

limit being positive or negative and, consequently, about  QQC ,  rising or falling 

when moving towards it.  

 

 

Figure 3(a):  QQC ,  when


 1 . 

Q 

 QQC ,  

Q0 

1

1









Q
K  
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Figure 3(b):  QQC ,  when


 1 .  

 

From (32) we can conclude that, when 


 1 , the function  QQC , is decreasing in 

Q , which means that introducing a cap may reduce welfare losses associated with 

future market entries. Further, by (32), the closer the cap to the current Q, the lower 

the loss. Hence, welfare is maximized if the cap is set equal to the current level of Q, 

which, as mentioned above, is equivalent to banning any further market entry.  In 

contrast, when 


 1 , the function  QQC , is increasing in Q , because as welfare is 

increasing in Q, introducing a cap would deter from benefiting, once the cap becomes 

binding, from further welfare gains.  Therefore, it is optimal to push Q   to infinity, 

i.e., having no cap at all.  

 

Therefore, also in the case of rationing we come to the same policy recommendation 

given in the case of free entry. The main difference between the two cases concerns 

Q 

 QQC ,

 

Q

 

0 

1

1









Q
K  
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the magnitude of losses that, in the case of free entry, include also the losses due to 

the occurrence of the run. In fact, comparing the impact of a cap on welfare under the 

two regimes, we conclude that:  

 

Proposition 4: For any level of Q exceeding the current market quantity Q, welfare 

under rationing is always larger than welfare under free entry. 

 

Proof: See Appendix C.             

 

5. Timing of entry and welfare: public goals and private action 

We start this Section with a numerical exercise illustrating the impact that the 

introduction of a cap has in terms of welfare under free entry and rationing. The 

resulting welfare levels will then be compared with the welfare levels accruing when, 

depending on whether 


 1  or 


 1 , the welfare maximizing policies that should 

apply are, as stated in Proposition 1 and 2, a ban or no cap at all, respectively. In this 

exercise the relevant parameter values are as follows: r = 0.1, M = 10, λ = 0.5, µ = 

0.02 and σ takes values {0.1, 0.2, 0.3}. Finally, we consider two cap levels,        

and       and we assume that the current level of X is equal to 50, i.e.      . 

Note that welfare levels under the different scenarios will be calculated on the basis of 

the number of active firms, Q, consistent with the current level of X and the 

investment threshold  QX *
. 
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No policy  

 σ = 0.1 σ = 0.2 σ = 0.3 

Welfare levels -112.05 205.53 553.91 

Optimal Policy 

 σ = 0.1 σ = 0.2 σ = 0.3 

    0.73 0.91 1.13 

 Ban Ban No cap 

Welfare levels 70.76 303.09 553.91 

Cap and free entry  

 σ = 0.1 σ = 0.2 σ = 0.3 

Welfare levels,       -210.51 -64.76 -1.33 

Welfare levels,       -133.23 90.79 233.71 

Cap and rationing 

 σ = 0.1 σ = 0.2 σ = 0.3 

Welfare levels,       -18.61 256.84 459.37 

Welfare levels,       -91.95 227.32 499.39 
 

 

Table 2: Welfare: optimal policy vs. cap.  

 

Figures in Table 2 show the actual impact that introducing a cap has on the welfare 

associated to the market for good A.  This impact, if compared with the welfare levels 

accruing when the optimal policies that our analysis suggests are implemented, is 

negative and relevant in magnitude. The cap induces always higher loss under free 

entry. This is due, as explained above, to the run that would characterize part of the 

market entry process. The loss due to the run lower as volatility increases. This is due 

to the probability of hitting the investment threshold being decreasing in the volatility 

level. This in turn slows down the entry process and pushes far in time the loss 

associated with the run. Hence, this loss, once discounted back, has a lower weight in 

present terms. Similarly, when raising the cap from 25 to 50, losses are lower in that 

the run will start, ceteris paribus, at a later time in expected terms. Under rationing, as 

the run is absent, welfare levels increase. We notice that whenever a ban should be 

announced, welfare is decreasing in the level of the cap. This is because, of course, 
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we are allowing for undesirable entries. In contrast, when capping investment is not 

optimal, having a higher cap allows for entries which positively contribute to welfare.   

We conclude the Section discussing the sub-optimality of private firms’ market entry 

from the perspective of Society. The timing of entry set by a private firm, as presented 

in Proposition 1, abstracts from the consideration of the actual cost paid by the 

Society for the production of good A. In this respect, a natural benchmark is 

represented by the optimal entry policy that would be set by a planner maximizing the 

consumer surplus associated to Q units of good A net of their social cost, QM  , i.e.
9
 

 

(33)     
 

 QX
QX

Q
r

M
rQX S *

*




 , 

 

or, if expressed in terms of price level,  

 

(34)  
 

  *
*

P
P

r

M
r

Q

QX
P

S
S 


 . 

 

As the analysis in this section has shown, when entry rights are rationed, the 

imposition of a cap does not modify at all the timing of entry set by the potential 

entrants. Firms internalize only the portion λ of the social marginal cost of producing 

good A and keep entering the market following the entry policy that would be set in 

the absence of a cap, i.e. (8). In terms of expected entry timing, this means that the 

entry process is faster than socially desirable. The same considerations apply for the 

case of free entry too. In fact, before the run starts, i.e. for     , the firm's entry 

                                                 

 

 
9
 See for instance Dixit and Pindyck (1994, Ch. 9). 
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policy is the same as in the case of rationing. Then, as soon as market quantity Q 

reaches the level Q
~

, the entry process becomes even faster as the firms start running 

filling up instantaneously the remaining slots.  

 

We illustrate this discussion by plotting in Figure 4 the investment thresholds 

dictating the entry timing in the first-best scenario and in the presence of a cap. 

 

Figure 4: Investment thresholds: private and social perspectives. 

 

Last, in order to provide a measure for the sub-optimality of the firms’ entry timing 

from a social perspective, we compute, using the first-best investment threshold as 

benchmark, by how much time, in expected terms, the entry decision is sped up when 

a cap is introduced.  

 

Let                   denote the first time in which the random price  , moving 

from the initial level      , hits the generic upper barrier   . By standard properties 

of the Geometric Brownian motion (see for instance Dixit ,1993), if 2/2   then:   

Q 

X 

Q
~

 Q
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 (35)  
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Otherwise, if 2/2  , then the expected first hitting time goes to ∞, implying that 

no market entries should be expected. in the following we focus therefore on the case 

where 2/2  . 

 

As mentioned above, firms enter the market earlier than socially desirable. Using 

(35), we can easily determine by how many time-periods entry is sped up. This 

corresponds to the expected first time the price  , moving from the level *P , hits the 

barrier SP , that is 

 

(36)  
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Similarly, once the run has been ignited, entry is sped up by the following amount of 

time:  

 

(37)  
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Now, for the sake of illustration, we propose a numerical exercise where we set r = 

0.1 and M = 10, and let µ, σ and λ take values {0.01, 0.02, 0.03}, {0.1, 0.2, 0.3} and 

{0.75, 0.50, 0.25}, respectively. 
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In table 3, we find the figures relative to the amount of time by which firms speed up 

their entry when entry rights are licensed or, in the case of free entry, before the run 

starts. The empty cells stand for combinations of µ and σ in which 2/2   and no 

market entries should be expected. We notice that, as expected, the higher the 

externality, the higher the time advance. The advance lowers as the drift increases. 

This is because the higher the drift, the faster price increases and, consequently, the 

higher the likelihood of hitting the upper barrier in a shorter amount of time.
10

 The 

opposite occurs when the volatility increases as, being lower the likelihood of hitting 

the barrier, a longer amount of time is needed before hitting the barrier.   

 

),;( * SPPE   

λ = 0.75 

 σ = 0.1 σ = 0.2 σ = 0.3 

µ = 0.01 57.536 - - 

µ = 0.02 19.179 - - 

µ = 0.03 11.507 28.768 - 

λ = 0.50 

 σ = 0.1 σ = 0.2 σ = 0.3 

µ = 0.01 138.629 - - 

µ = 0.02 46.210 - - 

µ = 0.03 27.726 69.315 - 

λ = 0.25 

 σ = 0.1 σ = 0.2 σ = 0.3 

µ = 0.01 277.259 - - 

µ = 0.02 92.420 - - 

µ = 0.03 55.452 138.629 - 
 

 

 

Table 3: The advancement of market entry timing under rationing and free entry 

(before the run). 

 

 

                                                 

 

 
10

 See Dixit (1993, Section 6.1) for the derivation of the probability of first hitting. 
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Similar considerations hold when looking in table 4 at the time advance by which 

firms speed up their entry during the run. The only difference is that, being absent the 

consideration of the option value, the advance is substantially higher in relative terms.  

 

),;( SPPE   

λ = 0.75 

 σ = 0.1 σ = 0.2 σ = 0.3 

µ = 0.01 115.073 - - 

µ = 0.02 43.999 - - 

µ = 0.03 30.705 98.083 - 

λ = 0.50 

 σ = 0.1 σ = 0.2 σ = 0.3 

µ = 0.01 196.166 - - 

µ = 0.02 71.030 - - 

µ = 0.03 46.923 138.629 - 

λ = 0.25 

 σ = 0.1 σ = 0.2 σ = 0.3 

µ = 0.01 334.795 - - 

µ = 0.02 117.239 - - 

µ = 0.03 74.649 207.944 - 
 

 

 

Table 4: The advancement of market entry timing during the run. 

 

6. Conclusion 

In this paper, we have considered the problem of firms entering a market where 

output prices evolve randomly following a Geometrical Brownian motion and 

production has an adverse externality for Society. We have then studied the 

opportunity of introducing a cap on market entries in order to limit the welfare losses 

associated with this externality.  This has been done considering both a scenario 

where firms may freely enter the market and a scenario where the right to enter the 

market is rationed by distributing licenses when the cap is announced.  Once 

determined the consequent investment policy set by private firms, we have focused on 
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the implications that the imposed cap has on social welfare and raised a simple 

question: which is that cap level that should be set in order to maximize welfare? We 

have showed that, irrespective of the way by which the right to enter is allocated, the 

planner should set the cap at the currently existing quantity, i.e. ban further market 

entries, or have no cap at all. The policy to be chosen will depend on the strength of 

the option value associated with the entry decision. When its impact on the investment 

trigger dominates the impact of the externality, having no cap at all is welfare-

maximizing; otherwise, banning further market entries is preferable. This result is 

relevant in that it implies that the justification of a cap on the aggregate market 

quantity based on social welfare considerations is not plausible. This means that the 

introduction of caps in the reality results from the consideration of objectives other 

than the actual social welfare. This may be the case when, for instance, political 

parties in the office opportunistically favor specific parts of the Society in order to 

increase the chances of conserving power. In this respect, our model allows 

identifying the cost of this choice for Society as a whole. Last, our analysis clearly 

shows that the introduction of a cap does not influence at all the firm’s entry policy. 

This remains sub-optimal from a first-best perspective as firms keep not accounting, 

when entering the market, for the externality produced. This result opens to further 

research investigating whether, having the first-best in mind, considering a fee to be 

levied when entering the market may allow getting closer to the target.  

 

 

 

 

 



40 

 

References 

Bartolini, L., 1993. Competitive runs: The case of a ceiling on aggregate investment. 

European Economic Review, 37(5), 921-948. 

Bartolini, L., 1995. Foreign investment quotas and rent extraction under uncertainty. 

Journal of International Economics, 38, 25-49. 

Birkenbach, A.M., Kaczan, D.J., Smith, M.D., 2017. Catch shares slow the race to 

fish. Nature, 544(7649), 223–226, doi:10.1038/nature21728. 

Calzolari, G., Lambertini, L., 2007. Export restraints in a model of trade with capital 

accumulation. Journal of Economic Dynamics and Control, 31(12), 3822-

3842. 

Chao, C. C., Eden, .S.H., 2003. Export-performance requirements, foreign investment 

quotas, and welfare in a small dynamic economy. Journal of Development 

Economics, 72, 387-400.  

Di Corato, L., Moretto, M., Vergalli, S., 2013. Land conversion pace under 

uncertainty and irreversibility: Too fast or too slow?. Journal of 

Economics, 110(1), 45-82. 

Dixit, A.K., 1989. Entry and exit decisions under uncertainty. Journal of Political 

Economy, 97(3), 620-638. 

Dixit, A.K., 1993. The Art of Smooth Pasting. Chur, CH: Harwood Academic 

Publishers. 

Dixit, A.K., Pindyck, R.S., 1994. Investment and Uncertainty. Princeton University 

Press, Princeton. 

Kongsted, H.C., 1996. Entry and exit decisions under uncertainty: The limiting 

deterministic case. Economic Letters, 51, 77-82. 



41 

 

Moretto, M., Vergalli, S., 2010. Managing migration through conflicting policies: An 

option‐theory perspective. Scottish Journal of Political Economy, 57(3), 318-

342. 

Organisation for Economic Cooperation and Development (OECD), 2006, Managing 

migration - Are quotas and numerical limits the solution? (Part II), 

International Migration Outlook: SOPEMI 2006 Edition. 

Pennings, E., 2005. How to maximize domestic benefits from foreign investments: the 

effect of irreversibility and uncertainty. Journal of Economic Dynamics and 

Control, 29, 873-889. 

The Economist, 2017. A new effort to narrow the route to permanent residency in 

America. Feb 16
th

 2017. Available at: https://www.economist.com/united-

states/2017/02/16/a-new-effort-to-narrow-the-route-to-permanent-residency-

in-america.  

The Economist, 2018. How open is America?. June 14
th

 2018. Available at: 

https://www.economist.com/finance-and-economics/2018/06/14/how-open-is-

america. 

 

 

 

 

 

 

 

 

 

https://www.economist.com/united-states/2017/02/16/a-new-effort-to-narrow-the-route-to-permanent-residency-in-america
https://www.economist.com/united-states/2017/02/16/a-new-effort-to-narrow-the-route-to-permanent-residency-in-america
https://www.economist.com/united-states/2017/02/16/a-new-effort-to-narrow-the-route-to-permanent-residency-in-america
https://www.economist.com/finance-and-economics/2018/06/14/how-open-is-america
https://www.economist.com/finance-and-economics/2018/06/14/how-open-is-america


42 

 

Appendix A 

In this appendix we show that (4) presents the general form of the function V(Q, X). 

For that, we use the standard no-arbitrage analysis of the literature on irreversible 

investment under uncertainty (see, for example, Dixit, 1989).  

 

We start with the no-arbitrage condition: 

 

(A.1)      XQdVEM
Q

X
dtXQVr ,,   ,  

 

which states that the instantaneous profit, M
Q
X   , plus   XQdVE , , which is the 

expected instantaneous capital gain associated with a change in X, must equal the 

instantaneous normal return,   dtXQVr  , . 

 

Expanding  XQdV , according to Ito's lemma, taking the expectancy using (3), and 

rearranging, yields: 

 

(A.2)  
  

   XQVXXQVX
dt

XQdVE
XXX ,,

, 22

2
1    

 

Applying (A.2) in (A.1) yields: 

 

(A.3)                     0,,,22

2
1  M

Q

X
XQVrXQVXXQVX XXX   
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Trying a solution of the type X
b
 for the homogenous part of this differential equation 

and then a linear form as particular solution of the entire equation, yields: 

 

(A.4)       
  r

M

rQ

X
XQYXQZXQV











, , 

 

where  and  are the roots of the following quadratic equation: 

 

(A.5)    02

2
122

2
1  rxx  . 

 

The LHS is a quadratic function with a minimum point (since 2
 > 0) and negative 

values at x = 0 and then x =1 at the LHS due to the assumption that r > . Based on 

that,   > 1 and  < 0.  

 

The term   r
M

rQ
X 


 


 represents the expected value of the flow of profits if Q 

remains forever at its current level. The two other elements on the RHS of (A.4) 

represent therefore how the changes in Q over time, due to future market entries, are 

expected to affect the value of the firm.  

 

By properties of the Geometric Brownian Motion, when X goes to 0 the probability of 

ever hitting  QX * , and, consequently, Q changing, converges to 0. This implies that: 

 

(A.6)       0lim
0




 XQYXQZ
X

, 
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which in turn, leads, as  < 0, to   0QZ , and therefore to the function present in 

(4). 

 

Appendix B 

By (26), at the left end of the considered range of values, i.e. when QQ  , we have: 

 

(B.1)    ,0, QQC  

 

while at the right end, i.e. when QQ   , 

 

(B.2)                  
1

1

1
,
















Q

gK
QQC , 

 

which proves parts (ii) and (iii) of the proposition. To prove part (i), which states that 

 QQC ,  is a u-shape function of Q  within the range QQQ   , we start by 

differentiating  QQC , , as given by (26), with respect to Q , which yields: 

 

(B.3)     
1

,






Q

Qf
KQQC

Q
, 

 

where: 

 

(B.4)               QQQQQQf 1lnln1 . 
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From (B.3) it follows that the sign of  QQCQ ,  is the sign of  Qf . Hence, to prove 

part (i) of Proposition 1 it suffices showing that:   0Qf  at the left end of this 

range,   0Qf  at its right end, and   0' Qf throughout it.  

To prove that, we start at the left end of this range. Applying QQ   in (B.4) yields: 

 

(B.5)      01  QQf  , 

 

where the inequality follows from  < 1. 

 

At the right end of this range, applying QQ    in (B.4) yields: 

 

(B.6)                   QgQf   1  > 0, 

 

where the inequality follows from 0 < g() < 1 which is established in appendix D. 

Finally, we have: 

 

(B.7)      )1()1(ln11'  

















Q

Q
Qf  

 

            >      ln11   =    g 1  > 0, 
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The first equality follows from differentiating  Qf , as given by (B.4), with respect 

to Q . The first inequality follows from QQ   ,  > 1 and 0 <  < 1, and the 

second inequality follows from 0 < g() < 1. This concludes the proof of part (i). 

   

Parts (iv) and (v) follow directly from parts (i), (ii) and (iii). 

 

Appendix C 

In this appendix we prove Proposition 4 which states that welfare under licensing is 

larger than welfare under free entry for any Q  > Q.  

 

From the general form of the welfare function, given by (24), which is relevant in 

both cases, it is clear that comparing welfare in the two cases reduces to the 

comparison of the value associated to  QQC ,  in the two cases. For the purpose of 

this appendix, in the case of free entry, we denote this function by  QQCFE ,  and in 

the case of licensing, we denote it by  QQCR , . Under these notations, to prove the 

proposition it is sufficient to show that    QQCQQC FER ,,  , for each level of Q . 

To do so we define the function: 

 

(C.1)       QQCQQCQD FER ,,  , 

 

and prove that  QD  > 0 for any level of the cap, Q . First, we will show it for the 

range QQ   . Then we will show that it also holds within the range QQQ  

. 
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In the range QQ   , applying (32) for  QQCR ,  and (28) for  QQCFE ,  in (C.1) 

and simplifying yields: 

 

(C.2)   QD  =   1
1







u
Q

K
 > 0, 

 

where: 

 

(C.3)         gu . 

 

The inequality in (C.2) follows from 0 <  < 1 taken together with   1u  which is 

established in Appendix E. 

 

To show that  QD  > 0 also in the range QQQ   , we return to (D.1) and now 

we apply (26) in it for  QQCFE , , together with, once again, (32) for  QQCR , . 

From (26), (32) and (C.1) it immediately follows that when the cap, Q , is at its 

lowest possible level, i.e., at the current level of Q:   

 

(C.4)    0QD . 

 

In addition, by continuity, and since it was already established that  QD  > 0 in the 

range QQ   : 
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(C.5)    0QD  . 

 

Thus,  QD  equals zero at the left end of the range QQQ    and it is strictly 

positive at the right end of this range. Therefore, the only manner by which  QD  can 

be negative in some sub-part of this range is that within that sub-part it has a local 

minimum point, i.e., a point in which   0' QD and   0" QD . However, this is not 

possible because within this range, if   0' QD  at a certain point then   0" QD  

must also hold at that point. To show this, we return to (C.1), apply (26) and (32) in it, 

differentiate and simplify. This yields that within the range QQQ   : 

 

 (C.6)     

 

 
   






























1

lnln
1

11

1'




















Q

Q

Q

QQ

Q
QD  

         

Applying (C.6) in   0' QD and simplifying yields that when   0' QD  holds the 

following equation must also hold: 

 

(C.7)                      
Q

Q
QQ








 11lnln1 . 

 

Returning to (C.6), differentiating again, and simplifying, yields: 
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(C.8)     

   

 

      

































 



QQ

Q

Q

Q
QD

lnln1

1

11

1
" 1

1


















. 

 

Applying (C.7) in (C.8) and simplifying yields that within the range QQQ   , 

when   0' QD : 

 

(C.9)   QD"  = 
 








 


 

 Q

Q

Q




 


1

1

1
 < 

 
  01

1
1

2






 

Q
, 

 

where the first inequality follows from QQ    and the second from 0 <  < 1.       

 

Appendix D 

In this appendix we prove that  g > 0 within the range 1 . To do so we start by 

recalling that  

 

(D.1)   
1





 , 

 

and therefore: 

 

(D.2)  
 

   22
1

1

1

111



















d

d
. 

 

We use (D.1) and (D.2) to calculate the following limit: 
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(D.3)   
   

 

1limlim
ln

limlim 1

1

1

1

11

1
1

2

2

















 





























 










g , 

 

where the second equality follows from De L'Hopital's rule. Similarly, we also have: 

 

(D.4)    0limlim 1

11


 
g , 

 

Taking the first and second derivatives of  g  with respect to  yields: 

 

(D.5)     



1

ln' g , 

 

(D.6)   
 

0
1

1
"

2








g . 

 

(D.5), together with (D.1), leads to: 

 

(D.7)    0'lim 





g , 

 

Last, from (D.6) and (D.7) it follows that   0' g  for any 1 . This result, taken 

together with (D.3) and (D.4) establishes that   10  g  for any 1 .   
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Appendix E 

Lemma 1:   1u  for all  > 1. 

Proof:  Applying (D.2) and rearranging terms reveals that   1u is equivalent to: 

 

(E.1)  
 

   11
1

1













g . 

 

To show that inequality (E.1) holds we define its LHS by  h . The following two 

characteristics of  h  lead directly to  h  > 1.   

 

(a)    1
1







hLim  

(b)    10'  h . 

 

To prove (a): we calculate the following limits: 

 

(E.2)         

 

1
11

1ln

1

1ln1

1

1ln

1

1

1
limlimlim1lim 


















 


















 eee  

 

=     1limlim 1

11

21

1

1
1

 

















ee  

 

 

which, together with (D.4),  > 1, and the definition of h() lead to (a).  
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The following derivative is useful for proving (b): 

 

(E.3)  
       














d

de

d

de

d

d
1ln1ln

ln
1 111 

















 

 

    = 
      11ln1ln1ln1ln  e  

 

    = 
 

 







ln
1

1





 

 

Using (E.3) when differentiating  h   yields: 

 

(E.4)   
 

   
 

 


















'
1

ln
1

'
11

ggh 








 

 

   = 
 

      







'ln
1

1
gg 




. 

 

= 
 

    













2

1
ln1

1

1









. 

 

To prove (b) it now remains to show that the expression in the square brackets is 

positive. For that purpose, we define it as following: 

 

(E.5)        2ln1
1




  , 
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We calculate the following limit: 

 

(E.6)   
     

 

 2

2

1

1

1

11

1
1

2 ln2

lim
ln

0limlim












































  

 

      
 

0
ln2

lim 



 




, 

 

and the derivative: 

 

(E.7)          
 2

2

2
1

11
ln21ln1

1
'










  

 

    





1
ln2ln

1 2

2
   

2

ln
1









 


 < 0. 

 

 

Inequality (E.7) and the limit (E.6) imply that    > 0 and therefore, by (E.5) and 

(E.4), we have that  'h  > 0, for any  > 1. This establishes (b).  


